## A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

Vol. XXIV.--No. 14.

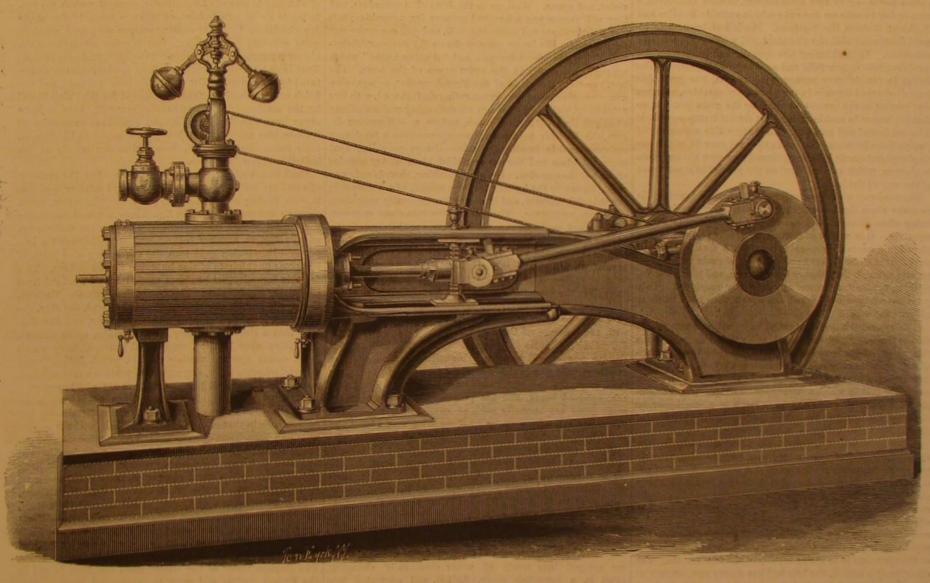
#### NEW YORK, APRIL 1, 1871.

§ \$3 per Annum. [IN ADVANCE.]

#### Improved Horizontal Steam Engine.

The design of the horizontal steam engine, illustrated in the accompanying engraving, shows that in engineering as well as in other matters, "Westward the star of empire takes its way." For a long time the principal cities in the Atlantic States have supplied the market with the best class chest, slide valve, and piston rod, lengthen in the same diof engines, and still the larger proportion of engines yearly turned out, are from Eastern manufactories. The design herewith presented will show, however, that the older shops in the East are no longer free from Western competition, and three classes; first, those with the single slide valve, cutting

The outer end of the cylinder is provided with a faced lug, adopted the same principles of construction in their portable resting upon, but not attached to, a pedestal firmly bolted to engines. the foundation. This supports the weight of the cylinder, and, at the same time, allows perfect freedom for expansion caused by the heat of the steam; and, as the cylinder, steam rection, the engine will have the same clearance and lead when at work as when cold.


In the manufacture of these engines they are divided into

Parties wishing for further information and descriptive circulars, can address the manufacturers, John Cooper & Co. Mount Vernon, Ohio.

#### Potato Diggers.

Commissioner Capron, in his last report, says:

The number of patents granted, during the year, on potato diggers shows that the zeal of inventors with reference to that they must now expect to yield at least a portion of the off by lap, at two thirds of stroke, and not adjustable, with a these machines is unabated. It is questionable whether a



#### COOPER & CO.'S STATIONARY STEAM ENGINE.

This engine is built from designs prepared by Mr. Isaac V Holmes, who, for a number of years was superintendent of of fuel is not an object. The second class includes those with construction at the Novelty Iron Works, New York city.

to be obtained is, the combination of simplicity of parts and tion; the cut-off point being indexed, so that the engineer proper distribution of material for strength, with such a can see it, and the speed of the engine being regulated by a correct proportion of the working mechanism as shall give Judson governor. Engines of this class are suitable for driv- ance to the operation of the machinery; but when it comes to the highest possible stability, durability, and economy in the | ing grist mills and other machinery carrying a steady load, use of steam. These points have been kept prominently in and only varied at stated times, when the point of cut-off can deal with the insidious soil, penetrating into every crack and view in this engine

piston rod and valve stems, thereby avoiding all trouble from gear that can be placed in the care of ordinary engineers. bolts and joints failing or working loose. Its form and see tion are those of a girder, wherein the metal is so distributed ders, fitted with the Babcock & Wilcox patent automatic as to give great firmness and stability.

The end of this bedplate containing the pillow block is formed with heavy flanges, extending out into a broad and manufactories where the power is variable; and it is claimed strong base to rest upon the foundation; while the opposite that they combine, in the highest degree, strength and duraend, forming the cylinder head and slides, is so disposed as bility, with perfect regularity of motion, and consumption of ed on two wheels and provided with a tongue, with a vertito furnish an equally strong supporting base for the cylinder, the least amount of fuel. We are informed that engines of cally adjustable scoop or shovel, affixed by suitable pendants the two being united by an elliptical arch, which resists all this class having developed a horse power with 2 10 pounds or hangers, which has been designed to pass under the hill, lateral motion caused by the angular thrust of the connect- coal. ng rod.

bolted the cylinder and steam chest in one casting.

the structure, for stiffness, and also allows the cylinder posts oil cups. The piston rods, pins, rods, and connections are of ed in such a way as to admit of a "jumping," or vibratory to extend below the bottom line of the cylinder bore, to in- polished steel. sure complete drainage through the exhaust passage.

field to younger, though fully as enterprising, establish- good reliable governor attached to steam chest; strong, plain, really effective machine for digging potatoes has ever been solid engines, adapted to saw mills and any kind of work where simplicity and durability are wanted, and where saving cut-off valves, arranged to close at any part of the stroke, In the planning of a steam engine, the great desideratum and adjustable by a hand lever while the engine is in mobe readily adjusted to the load; and they are claimed to give, The bedplate contains, in one casting, the shaft, pillow under such circumstances, a maximum result in the economiblock, crosshead, slides, cylinder head, and stuffing boxes for cal consumption of fuel, combined with a simplicity of valve

The third class comprises those with steam-jacketed cylincut-off, valve gear, and governor

These engines are especially adapted to use in mills and

In the designing of these engines, the flat slide valve, em-

brought before the public; that there have been very many which are utterly worthless, is certain. The large majority of these inventions are too cumbrous and complicated to be sufficient.

It will do well enough to multiply wheels and springs, ratches and pawls, when these are to be employed in shops, and places where there will be no extraneous hinderadorning with these appliances a potato digger which has to

Many of the inventors of potato diggers have put their theoretical ideas into such shape that a person who wants to see the model of machine calculated to clear the vines, remove the earth, raise the potatoes, sift them clean, separate the large from the small, and deposit each sort into different baskets, can have his curiosity gratified by inspecting the cases of the United States Patent Office

The potato diggers patented are generally a modification of a structure like the following: A rectangular frame mountcarrying the earth and potatoes back to a shaker, where they are separated, the earth dropping, and the potatoes being car-To this head, provided with broad and heavy flanges, is bodying the most favorable possible conditions for tightness ried to a screen, where they are more thoroughly cleaned. The after wear consequent upon long use, has been adopted; shaker is often a revolving apron, but more frequently a The chest, being placed at the side, gives ample width, to also, all the journals and bearings are fitted with self-feeding series of bars or rods, which are occasionally jointed or hingmotion. Occasionally one or more revolving shafts is placed The manufacturers of these stationary engines have also beneath the shaker, such shafts being provided with spurs or disintegrate and remove the adhering soil.

During the year, there were two inventions in this line patented, which differ radically from those patented in any previous year, and which promise great effectiveness. The first is provided with wheels, tongue, and frame as above described. To the tongue, about at the juncture with the whiffletree, there is secured a shovel plow, which is intended to remove the soil from the top of the potatoes. Just in the rear of this plow, one on each side of the line of the tongue, are placed two rollers, whose longitudinal axes are parallel with the direction of the draught, and which consequently revolve transversely to the track of the machine. These rollers are revolved by suitable gearing from the traction wheels and are provided with curved teeth, spirally arranged, which enter the soil, raising and cleaning the potatoes. The other machine has, for the digging and cleaning parts, two concave disks arranged at an angle of about 45°, which are perforated or slotted to permit the passage of the earth, the potatoes being delivered in a single line at the rear of the machine and directly in the opened ridge.

#### HARVESTERS.

In the department of harvesters the inventions patented are directed exclusively to the improvement of standard machines. The beginning of the year found reaping and mow ing machines with numerous defects, the chief of which were faulty gathering and delivering devices. Many of the machines belonging to this class require, besides the driver, a man or boy to rake up the cut grain in suitable bundles and discharge it from the platform. Much has been done toward dispensing with the attendant, and making the machine automatic. In performing the operation of gathering, the revolving rake is generally and successfully employed, defect in the delivery arrangement is this: the grain has been discharged directly in the rear of the machine, or upon that portion of the ground occupied by the grain just cut, so that the horses in making their next circuit tramp upon it if it be not bound and removed. To obviate this a number of patents have been granted during the past year in which are employed automatic binders, designed to secure the cut grain in sheaves, which are deposited on the ground at a point out of the way of the horses.

The tendency of improvements in harvesting machines is to make them lighter and cheaper, the latter desideratum being often obtained at a sacrifice of substantiality in the structure. It is matter of remark how much power is employed in a harvesting machine to effect a small amount of work. It is obvious that to cut a swath of grain requires no greater strength than that in a man's arm, and yet to accomplish it, two to four horses are generally employed. This point has not been overlooked, and efforts have been made to mitigate the evil.

It is esteemed a desideratum to have one machine adapt able to the cutting of both grass and grain. To accomplish this result, efforts have been directed to producing a change of motion, as to cut grass a greater rapidity of the cutting instrument is required than in cutting grain. The common method is that in which a sliding pinion or spur wheel is employed, so that by a change from a large to a small gear, or cice versi, the speed of the cutter may be increased or dimin-

Of the devices used directly to cut the grain, including the endless toothed belt, the rotary saw, and the reciprocating cutter-bar, the latter retains by far the larger number of ad mirers. Outside of the fact that inventors would naturally endeavor to evade the patent on this device, and to procure some other instrumentality that, without infringing it, would effect the same result, efforts have been made to avoid, by some means, the noise, shaking motion, and jar caused by the rapid working of these machines, as prejudicial to the nerves of the operators as to the durability of the implements. The other devices named, the belt and the rotary saw, are not so obnoxious to the charge, but they do not meet with the favor which is lavished on the reciprocating cutter-bar. To obviate this shaking, and noise, an inventor some years ago obtained a patent for a divided cutter-bar, but arranged the deadcenters of the cranks, to which the cutters are connected, at right angles to one another, thereby just doubling the evil. It is obvious, however, that this invention may be turned to advantage by arranging the dead-centers in a line, whereby the shock of one side will be met and counteracted by that of the other, and thus produce a smoothly running and almost noiseless machine for harvesting operations.

#### ARTIFICIAL JEWELRY.

This is a very extensive and important trade. It is of remarkable interest to a superior class of English artisans just now, because the factories, which used to furnish the prome nades, the shops, and the pavilions of the Palais Royal, in Paris, are idle and silent for awhile, and the manufacture is coming over to England.

Your Parisian master is a critic of precious stones; he knows how to cut them, he then knows how to mount, and immediately afterwards, how to imitate them; he is an artist in enamel, mosaic, and gilding; he can amalgamate gold with silver, producing every kind of splendid illusion. Now amongst the objects of human desire, vanity considered, may be reckoned jewels, true or false; they are prized for particu lar variations of weight, light, and color. There are wor shippers of the diamond, and devotees of the opal; the ruby has its adorers, and the emerald its slaves. But we cannot all afford to wear these gems of the earth, with their far-darting rays and gleams of twinkling brilliance. A philosopher's

French diamond, for which so enormous a desire has for years been exhibited at Paris, which was, until lately, the very center of this sparkling commerce? It is a bit of colorless paste, super-imposed upon another, with a darting central radiance; both perfectly white except for the prismatic aurora incessant playing through them. But you may g ind, for this most fanciful among the fancies of mankind, an oriental sapphire, a topaz, an amethyst, or a crystal; and out of the gleaming powder shall arise a beautiful imposture, which none except a professional lapidary would pronounce to be other than a diamond. But the process is exceedingly delicate excessively difficult. The cutting is a most singular art; the tools must be selected with not less scrupulousness than 'are medicines for delicate children.

And as for the ordinary materials! Fancy a Parisian me chanic, engaged upon these manipulations, employed to make a fatse diamond out of white sand; first washed with hydrochloric acid, and then with simple water, minium, calcined soda and borax, and oxide of arsenic! Here we have a combination entirely lucid; but when the Parisian artisans came to the sapphire-the second in their estimation, of all pre cious stones-they have to deal with its wonderful and varying colors as of those, especially, from Pegu and Cambay from Ceylon and Bohemia. The obstacle lies in the production of that lovely dark light, burning in, and bursting from, its heart, for which the stone is famed, in all its hues-white, (the rarest), pale blue, ruby tinted, vermilion, milk colored violet, and green. Well, go to the Jews of Amsterdam, and they will charge you a hundred guineas for a sapphire; but buy a little strass and oxide of cobalt, and you can make one for yourself. We lay no great stress on the Parisian fabrication of chrysoberyls, chrysopals, and "floating lights," which are really not jewels in the strict sense of the term. The last, known in the slang of the French market, as aquaphonanes, are of an asparagus green, rather shell-shaped, with two refractions, and pretty enough when flashing under a galaxy of chandeliers. But the French, and, in a still greater degree, the English mechanics, have encountered a far deeper embarassment in treating the ruby-always providing that mere red glass and the other pitiful ideas of toy arcades are out of the question. Properly speaking, there is only one ruby, (known to the lapidaries'as the spinel), of a tender red; the Oriental, Barbary, and Brazilian are generally sapphires, amethysts, or topazes. The color of the true stone may best be described, perhaps, as a combination, exquisitely delicate, of rose and cherry; but some are wine-tinted, or of a violet hue, or tinged with vellow. It is astonishing how far a mixture of white lead and pulverized and calcined flints will go in competition with the jewel beds of India. So with emeralds: the same paste as is used for artificial diamonds, is blended with a precipitate of oxide of copper, and the green gem sparkles brilliantly. The garnet requires paste dyed with the "purple of Cassius;" it is, however, exceedingly difficult to imitate its starlike ray. Oxide of cobalt and the Cassian purple will produce a beautiful semblance of the amethyst, though a better is obtained by a mingling of white sand, treated with hydrochloric acid, red lead, calcined potash, calcined borax, and the purple. Thousands of these mock gems are annually sold, at considerable prices; and thousands of them are worn by those who would have the world believe in heirloom jewels.

Do you admire Mademoiselle's coral necklace? It is made of resin and painter's vermilion-about as much of the latter as dazzles on her cheek. Or her pearls? False pearls were absolutely invented in the capital of France-false in so many of its fashions. Thence the art spread throughout Italy. The manufacture is exceedingly curious. foundation are used the scales of the blay, a small flat fish, with a green back and a white belly, the latter being of a very silvery appearance, and easily detached. The scales are scraped into bowls of water continually changing dried in a horse-hair sieve, melted, and converted into 'essence of the East," to which is added a little gelatine, and this mixture is spread, with the utmost care, over deli cate globes of glass. When cool, these are pierced and filled with white wax, to give them the necessary solidity and weight. Ocas-ionally, real opals, powdered, are used for the more costly kinds. The Turks carry on a great traffic in pearls of roses," c lored from rose leaves crushed in a mor tar. The black, red, and blue varieties are mimicked with equal ease, and there is an affectation of adding to their charm by perfuming them during the process with attar and musk. Among the ingredients also employed may be men tioned Japanese cement and rice-paste. The modern romanand the scales from oyster and other shells triturated in spirits of wine, coated with white wax, heated to a high degree. The trinkets imported as "Venetian Pearls" are glass, and their production presents no difficulty.

Now, as to the mounting. Infinite care is bestowed upon this by your French artificer. He has to consider how his sham settings—they must be sham since he must sell them cheap-are likely to suffer from the action of heat, of electricity in the atmosphere, of oxygen, of air and water, and of acids; and he resorts to copper, lead, platinum, iron, steel, gold, silver, and their amalgams accordingly. The history of their manipulation by his or several sets of hands, is worth noting: the softening, the purification, the moulding the washing, the hammering, the melting, the coloring or bleaching, the chiselling, and so forth, through an entire, instruments for welding, instruments for soldering. One paragraph 7, lines 2 and 4, for "month" read "moult," stone, of some sort, must be found, which shall convert cheap enameller's knife, sharp as a diamond's edge, and nearly as importance,"

teeth passing up between the rods, the more effectually to substances into glories; and to begin with-what is the false hard; a fifth subjects the completed work to a microscopical examination. Not fewer than ten differently-shaped ham mers are used. This industrial economy is peculiarly interesting. The diversity of aptitude, of course, encourages the division of labor, as will presently be seen more minutely.

For the moment, let us revert to the French meretricious jeweller's other ar.s-those of coating common with precious materials, and enamelling. Few persons have any idea of the extent to which these tricks in manufacture are carried. The ingenious and cheap French enamel, white or colored, made up into rings, collarets, and bracelets, brings a great profit to the workmen, and is really attractive. But it requires time and study to obtain a mastery over this art, There is the fixing of the translucent glass upon the metallic surface, the painting of the vitreous plane, the choice of tints, the subtle application of heat, the consideration of chemical action exercised by one oxide upon another, and the due admixture of materials. Then, the engraving of enamels is a task requiring all possible exactness and tenderness of touch. We hardly reckon among these gaieties-so to call them-of picturesque industry, mock mosaics, damascening, or gilding, although the last is a very important affair in the ight of France, which pretends to be the great gilder of the world-gilding even its young men, as Juvenal dares to assert the Romans gilded their goddesses-of flesh and blood. The Parisians style this "gold" coloring-and their methods are extremely various-the oil, the hot, the cold, the bronze, the copper, the steel, and the ether; but the magic of silvering is scarcely less intricate, especially when the surfacing is to be totally false, or what is termed "argenterie des charlatans." As for coating copper with gold, which is quite different from gilding, this belongs altogether to a higher artisanship, applicable also to lead, and even to iron. Next in order are the much esteemed steel trinkets manufactured by the French. The invention is of old date, and the finish and polish of the fancies produced for the Palais Royal by the artificers of the riotous Faubourg St. Antoine have never been excelled, even by the ambitious mechanics of Austria, who are Dutch in their perseverance, and Italian in their taste. But, after all, these artists aim mostly at the imitation of jewels or gold.

Shall we reveal another of their secrets after the manner of a cookery book? Take a little powdered sulphur, sprinkle it with boiling water, mix well; boil the concoction, strain through fine muslin; put the liquid into a vessel containing the substance with which you desire to play the Rosicrucian trick, resort to another boiling, and your Cornish tin ispresto/-Babylonian gold! A das 1 of spring aloe juice, of salt-peter or sulphate of zinc improves the imposture. How far this deceptive art has been carried may be judged from its catalogue of styles: The Lamb, the Arch, the Turkish, the Myrtle branch, the Maltese Cross, the Dead, the Star, the Lance-iron, the Violin, the Hatchet, the Rose, and the Turtle. Into a similar category come agraffes, opera glasses decorative shoe buckles, ornamental buttons, fancy watch keys, cream spoons, writing pencils, punch ladles, jewel caskets, scissors, pipes, egg cups, and tobacco boxes—all imitations, my friends, all gew-gaw, and yet not a little pretty.

But in no branch is this fraud-for it is a fraud when the prices charged are those due for genuine materials-pushed farther than in that of honorary decorations, without one of which no Frenchman appears able to live. There is the Order of St. Ampoule, or the oil which was brought from heaven by a dove. It is a bit of gilt copper with an attachment of black ribbon. The Palais Royal charges you fifty shillings for it. So with the order of the Weasel, of the Star, of St. Louis, of Mount Carmel, and St. Lazare, of the Dog and Cock of St. Michael and the Holy Spirit, and even of the Legion of Honor. They were all prostituted to the purposes of a jeweller's profit. Nor is it generally known what a manufacture of foreign decorations was, until la'ely, carried on at Paris. The English Order of the Garter itself has been forged in the French capital, and worn at continental courts. That of the Golden Fleece, the pride of Imperial Austria, has been successfully imitated, though its collar is at once exceedingly rich and of exceedingly delicate workmanship. We have seen Napoleon's Iron Crown-not to be compared with the old and proud signum of Lombardy-so perfectly counterfeited as to escape detection more easily than a mock Waterloo bullet. The Danish Government is so jealous of anybody assuming the blue ribbon of the Danish Elephant, that it or dains a perpetual exclusion from court of all individuals buying these spurious sparkles.

Now, not to prolong a series of examples already sufficient, we may again remark that a number of workmen in Paris n dependent upon this industry and thrived by it. It is not by any means a degrading business. The deception is, in fact, no deception. It is avowed in the market-place; the objects are sold as shams; no one of common sense or knowledge could take them to be anything else; but they bring, or have usually brought, to the artisans of Paris, an enormous annual income

In our issue of February 18th, we published a short paragraph, stating that no successful advertising agency had been established south of Baltimore. We are in receipt of a letter from Walker, Evans & Cogswell, of Charleston, S. C., who nform us that they have conducted such an agency for many years, with entire success

SILK CULTURE.-ERRATA.-In the article on "Silk Cultechnical dictionary. There are instruments for stamping ture, published in our issue of March 18th, in column 2. workman chamfers; another flutes; another stands at the column 3, line 9, read "hatching out" for "hatching only." laminating machine; the fourth bends over the delicate In line 47, same column, for "less importance" read " no less

#### ANNUAL ASSAY OF THE COINAGE.

BY F. A. P. BARNARD, LL.D.

It is provided, by the acts of Congress establishing and regulating the United States mint and its branches, that there shall be an annual scrutiny of the results of the operations of each year, in order to verify the fidelity with which the coinage is kept up to the legal standard, both as to weight and as to the degree of fineness of metal. This scrutiny is conducted by a commission, consisting of three members acting ex officio, and ten or twelve others appointed by the President of the United States. The annual assay of the coinage of 1870 was conducted at the mint in Philadelphia, on the 13th, 14th, and 15th days of February, 1871, by a commission composed as follows:

Ex-officio .- Hon, John Cadwalader, Judge of the United States District Court for the Eastern District of Pennsylvania; H. D. Moore, Collector of the Port of Philadelphia; and United States District Attorney, A. H. Smith.

Appointed by the President .- Prof. Joseph Henry, Smithsonian Institution; Prof. John Torrey, United States Assay Office, New York: F. A. P. Bernard, President of Columbia College; J. E. Hilgard, Assistant Superintendent of Weights and Measures; Hon, H. R. Linderman, Philadelphia; Prof. Fairman Rogers, Philadelphia; John J. Knox, Deputy Comptroller of the Currency; Hon, John P. Putnam, Boston, Mass. E. B. Elliott, Esq., Washington, D. C.; Robert J. Stevens, Esq., San Francisco, Cal.; M. C. Read, Esq., Hudson, Ohio.

In order that the test may extend to every coinage of the year, the law requires that, at each delivery of coins made by the chief coiner to the treasurer, a certain number of pieces of each denomination shall be taken by the treasurer, in presence of the assayer, indiscriminately from the mass, carefully labelled, and placed in a chest having two independent locks, the keys of which are kept, one by the treasurer and one by the assayer. The branch mints being under the direction of the director of the principal mint, the coins reserved, as above described, at those establishments, are transmitted for examination to Philadelphia.

On the meeting of the commission, which takes place an nually on the second Monday in February, all the packages of reserved coins are placed before the commissioners, and opened by them in presence of the director of the mint, The coinages of the several mints are kept separa e from each other, and the gold coins are kept separate from the silver. The commission is then arranged by the chairman into two committees, one for the trial of the weights, and the other for assaying the fineness.

The weighing committee thereupon takes, from the gold coins and also from the silver coins, of each mint, a certain number, not less than ten, embracing also more than one denomination, if there are varieties; and these are weighed in bulk. They also take any number of pieces, not less than five, and of differing denominations, if there be such present, to be weighed singly. All these are placed with the mint marks downward, and the weighing is conducted by the committee themselves, or by experts under their scrutiny It is usual, finally, to weigh the whole mass of the gold coin and also the whole mass of the silver coin, from each mint, which remains in the hands of the committee after the selection of pieces for assay.

The committee finally examines the weights ordinarily employed in the mint, and tests their accordance with the standards prescribed by law.

The committee on assaying takes, from the coins left by the other committee, a sufficient number for its purposes, and causes a portion of each parcel to be melted into an ingot. From each of these ingots a sample is then taken for assay A convenient number of single coins, of different denomina tions, is also selected from each parcel, from which samples are taken in like manner. In the case of silver, the sample for the assay of mass is not cut from the ingot, but taken by granulation in water, previously to pouring the liquid metal nto the mold.

The told is assayed by cupellation and quartation; the silver, by precipitation. The weight of the metal, to be tested, employed in each assay for gold, is one half a gramme This is weighed out upon a balance sensitive to the twenty. thousandth of a gramme (the ten-thousandth of the weight employed). All the lesser weights are decimal subdivisions of this half gramme. The weights used in this process are kept in a box, with two independent locks, the key of one of which is in possession of the director of the mint, and that of the other in that of the Judge of the United States District Court for the Eastern District of Pennsylvania, who is ex officio chairman of the commission.

hammered, and subsequently laminated between rollers, to the plumb rule was correct. The builder said he was ready facilitate the adjustment of the weight by cutting off minute to take his oath that the wall was plumb, and that the plumb portions. Each lamina is stamped with a distinctive number. Side by side with the coin assays, a test assay is conducted, in which the metal used is pure gold, cut from a roll kept for defendant's counsel, "while I put this master-builder to the the purpose in the box containing the weights. As the standard fineness of the coin of the United States is 900 parts by weights of pure gold to 100 of alloy, the test assay is

made upon 1000 of a half gramme.

Silver is then weighed out for the quartation, from a roll of the pure metal, kept also in the box with the weights; and the several samples, properly enveloped in sheet lead, are placed in order, according to their numbers, and transferred in like order to the cupels. After being withdrawn from the muffle, the buttons are hammered, annealed, and laminated between rollers, each lamina being finally stamped on one end with its number. The specimens are then rolled into replied the counsel; "I merely ask you to tell the jury how cornets, with the numbers visible on the external end, and you know that the plumb rule worked with was correct? are then deposited in the separate cells of a little platinum

basket-like apparatus, which suffices to hold, in very small compass, sixteen or twenty specimens, to be treated all at once. This is immersed in a matra s or alembic of platinum, where the specimens are first boiled for ten minutes in nitric acid of 22° Baumé, and then twice successively, for the same length of time, in acid of 32° Baumé.

The specimens are then taken out, washed in distilled water, heated to redness, and finally weighed again.

Out of 8 separate assays of gold made by the commission for the present year, 3 gave exactly 900 parts to the 1,000, 1 deviated  $\frac{1}{10}$  of a part, and 4 deviated  $\frac{2}{10}$  of a part in 1,000. The law allows a deviation, technically called the "tolerance," of the two whole parts in 1,000, either above or below the legal standard; but the mint officers work, of course, as closely to standard as possible, without regard to tolerance. The results of the mint assays for many years show that the tolerance is unnecessarily large; and in the new bill for the regulation of the mint business, recently proposed by the Treasury Department, the tolerance is reduced to 1 part in 1,000.

The silver assays are made by weighing out 1,115 parts of the metal under trial, these parts being milligrammes. This weight is taken because, at the lowest limit of deviation from standard allowed by law (which, for silver, is 3 parts in 1,000, the standard fineness being, as before, 900 in 1,000), there will be just 1,000 parts of pure silver in the specimen. A test assay is also made by weighing out 1,005 parts of silver absolutely pure, which is subjected to the same processes as the specimens under scrutiny. All the specimens and the proof metal are introduced into numbered bottles, nitric acid is added, and a gentle heat is applied. The solution being complete, precipitation is effected by introducing, from a pipette, into each bottle, 1 decilitre of a standard solution of sodium chloride, so prepared as to contain, in this measure, 542.74 milligrammes of the salt—the quantity necessary to precipitate 1,000 milligrammes, or 1 gramme of silver. the case never, or at least very rarely, occurs, in which the specimen is at the lower limit of tolerance, this dose of salt leaves some small amount of silver unprecipitated. The precipitate is therefore made to subside by agitation; and for this purpose a mechanical agitator is employed, put in motion by power derived from the shafting in the coining department, which expedient contributes greatly to economy of time.

When the liquid is clear, a small pipette is used, graduated so that each division indicates a quantity of the re-agent sufficient to throw down 1 milligramme of silver; and the number of these parts which are required to complete the precipitation fully, corrected by the indications of the proof assay, exhibits, when added to 897, the proportion of pure silver in 1,000 parts of the metal under trial.

In the recent assay of the silver coinage, out of 7 specimens, 2 were found to be in exact accordance with the standard; 1 was found to be  $\frac{4}{10}$  of  $\frac{1}{1000}$  above; 2 others were  $\frac{8}{10}$  of  $\frac{1}{1000}$  above; another,  $\frac{1}{1000}$  below; and another,  $\frac{1}{1000}$  above. As the tendency of silver alloys is to irregularity of distribution, in a greater degree than is true of those of gold, it is reasonable that the limits of "tolerance" for this metal should be greater; but these assays show that the amount of deviation, from the standard, allowed by law is considerably too great. The new mint bill proposes to reduce it from 1300 to two and a half 1000; but this reduction is by no means sufficient. There is no need that it should exceed 2 1000.

#### HOW DO YOU PROVE YOUR PLUMB RULE!

#### A TECHNICAL LESSON.

The following particulars are authentic, and I remember all the parties. I shall condense from memory. The matter in dispute was a brick wall which fell shortly after its erec tion, the downfall of which, I believe, was accelerated by a downpour of rain. When the builder put in his bill for pay ment, his client refused to acknowledge any claim. The wall was certainly built, and the wall was certainly dowr. The client contended that it was badly constructed, and that it was put up in an unworkmanly manner; the builder, on the other side, was ready to swear and prove that it was erected by competent workmen, and that it was executed in a creditable and workmanlike manner.

The case had to be settled in the law courts, the builder being the plaintiff. The defendant secured the services of a clever, well known counsel, who was known to have a knowledge of architecture. When the builder was giving his evidence, he was submitted to a severe cross examination, in which his practical knowledge cut a very sorry figure. The particular point of the question turned upon the plumbing The samples, from which the metal for assay is taken, are of the wall, whether it was truly perpendicular, and whether rule was quite correct.

"Listen for a moment, gentlemen of the jury," cried the test. You will be able to judge of his practical acquaintance with his profession from the answer he gives. Well, Mr. Builder, you are ready to swear upon your oath that the wall was plumb ?" "Yes." "You are?" "Yes."

"Will you be so good, Mr. Builder, as to turn round and tell those twelve intelligent jurymen in the box, how you know that your plumb rule was correct ?"

The builder hesitated for a moment, and then replied: "I know it was correct, for my workmen are always careful and particular with their work."

"I am not disputing the character you give your workmen,"

"I know it was correct," repeated the builder, "because it glorious celestial sights.

was made the same as all plumb rules are made, and used by men in the habit of using them.

"I must ask you again, Mr. Builder, to be so kind as to tell the jury and me how you are certain that the plumb rule was true? or, in other words, let us know how you prove your plumb rule?"

This was a poser,

"Now, Mr. Builder," continued the defendant's counsel, you have come into court to make a claim against my elient; you swear that the wall was built properly plumb, and that it did not tumble down from bad workmanship. I now ask you, as a respectable builder, to just explain to the jury the method of practically constructing and proving a plumb rule. You are no doubt aware that if a plumb rule be not correct, the work that it is applied to will not be correct. I am ready to prove that it was not correct, that the wall overhung. Geometrically speaking, it was out of perpendicular; consequently, the work was badly executed, and I deny that you have any claim for payment.

A silence for some minutes reigned, and then the plaintiff made one or two ineffectual att. mpts at explanation, but got so confused that he completely broke down.

"It is needless, you see, your lordship, and gentlemen of the jury, for me to carry this case much further. I will simply conclude by saying, here is an instance of the deplorable consequences attending rash assertions and wrongful claims. Men are found to come forward to make a claim for what they have no right to, or have forfeited, and are ready to fortify their unfair demands by swearing that they know practically what they do not know. Well, gentlemen of the jury, as the master-builder, when in the box, was unable to prove his plumb rule, perhaps he will not take it amiss for a lawyer to tell him how to practically construct and at the same time prove a plumb rule, which may be depended upon, for plumbing a straight wall, or any other description of perpendicular work. Take a piece of board a little more than the proper length, breadth, and thickness which you require. With a pair of compasses strike a circle on its face, within a few inches of each end. Plane straight on the edge until the sides of the circles are touched; repeat on opposite edge. When this is done, your piece of board will be of a parallel breadth. Then a line drawn through the center, with a slit for the cord, and an opening for the play of the "bob," will complete your plump rule. I am not an architect, gentlemen of the jury, but I believe no architect, builder, or workman, will say I have not given a practical method for proving a plumb rule. One word more, gentlemen: I think when a master-builder comes into court, and takes it upon himself to swear that his work was properly executed, he ought to be able to give us proof, when asked, of the workmanlike manner of its accomplishment. I now ask a verdict for my

The jury unanimously declared in favor of the defendant, the foreman saying that he himself, and his fellow jurors, were of opinion that the wall was badly constructed, and out of plumb, and that that was the reason of its fall.

It may be asked here, was the counsel for the defendant technically correct in his method of proving a plumb rule of any length? And it may be further asked, how many master-builders, and workmen, too, are there at the present hour, who, if called upon suddenly, could practically demonstrate, in proper language, the geometrical construction of a simple plumb rule, or straight edge? However astounding it may seem, I have come across many workmen who could not, without some thinking and groping, properly set out the egg oval opening, or "bob" hole, in their plumb rule. Archimedes is reported to have said, that if a prop, or position, and a lever, were given to him, he would move the world. Technical knowledge is the prop, the position, and the lever; and, without the ambition of the great Greek mathematician, it will enable a man, at some time or other, to lift himself in the world, and, morally and socially speaking, lift up the world at the same time.-Builder.

#### A Subterranean Pond---Eyeless Fish,

It is well known that great trouble and expence have been caused by the sinking of a portion of the track of the new Jefferson Railroad, where it crosses a swamp in Ararat township, Pa. It has been found, says the Montrose Repu that under the swamp is a subterranean pond, of several acres in extent and of considerable depth. This pend is covered by about six feet in depth of black earth, which supports a heavy growth of woods. The trees are mostly soft maple, pine, hemlock and birch, many of them ranging from six inches to three feet in diameter. Last fall it was discovered that the subterranean pond contains many fish, of the kind usually found in ponds in this part of the country-pickerel and "shiners" among others-but all without eyes! In the darkness of their subterranean abode, they have no use for the organ of vision. The Ball Pond, about a mile and a half distant, is now "growing over." A considerable part of it has become subterranean within the last twenty years, and, probably, before many years it will be entirely covered like the other. This pond is about twenty acres in extent. For some distance from the shore, it is filled with a dense growth of water-lilies, and these no doubt, furnish the foundation on which the sup retructure of earth is commenced.

LUNAR RAINBOWS are not so uncommon after all. We never saw such a sight ourselves, but many of our readers have if we may judge from the testimony now coming in. We cannot however, find room for the letters already received on the subject, and can only express the hope that our numerous correspondents may live to see other equally

THE "LUNA" MOTH. BY PROPESSOR R. C. H. DAY.

Fairies, those unseen loves of our early, happy, unreason of mythical impossibilities; and, in truth, even with children, they are rapidly becoming an extinct race, exterminated by so easy, and, at the same time, savored so delightfully of the ery this vast system is marvelous to be able to say " the good

people ' have been here this night, and have brought this," or tremblingly to recognize in mischief the hand of some elfin Robin Goodfellow. It was so much easier, we repeat, than to discover by close observation, careful experiment, and strict unimaginative induction, that good things are not fairy gifts spe cial to ourselves, and to learn, worse still, how bad things are but too frequently the certain results of our own stupidity, folly, and viciousness-the most vengeful and inexorable of goblins. And it is to this, good reader, that science brings us. Oh, that we could sometimes believe in imps and fays!

Now, we do not know whether the inhabitants of America were ever blessed with elfin agencies; Indians would hardly have appreciated beings who could

"Creep into acorn-cups, and hide them there ;" and roystering Dutchmen in their (not acorn) cups amid the lone valleys of the Catskills, would have been all too coarse associates for the monarch to whom

"The elves present, to quench his thirst, A pure seed-pearl of infant dew, Brought and be-sweetened in a blue And pregnant violet."

As for genuine Yankee fairies and mermaids, never, except in Barnum's! And yet we almost wish that we could certify to the actual existence in America of a fairy queen, who, in a momentary whim, had decked the Luna moth in its beautiful garb; say, that it might attend her majesty's moonlight revels, fittingly adorned. Could we only have brought ourselves to have given to the reader as true such a pleasing myth, it would have saved us the trouble of a vast deal of, what he even now may deem useless, speculation. But first let us quote, from Harris, his admirable picture of this beautiful insect.

" Pre-eminent above all our moths in queenly beauty is the Attacus (now Actias) Luna, or Luna moth, its specific name being the same as that given by the Romans to the moon, poetically styled 'fair empress of the night.' The wings of this fine insect are of a delicate light-green color, and the hinder angles of the posterior wings are prolonged, so as to form a tail to each, of an inch and a half or more in length; there is a broad purple-brown stripe along the front edge of the fore wings, extending also across the thorax, and sending backwards a lit-

tle branch to an eye-like spot near the middle of the wing; | and a half."

ciate fully the beauty of the Luns see the living insect, and as it flies by night; but few are fortunate enough to meet with it; and of those who do, there insect appears in itself to have any definite purpose, yet they a common practice to mix glue with plaster when there is are many, even professing to be persons of taste, who would both must be intimately connected with the structure and doubt as to its quality; the glue causes the whole to take a pass it by, as beneath their notice. Certainly, then, its beauty conditions of life of the larva, and we may readily suppose longer time in setting. was not intended especially for the gratification of the eye of man. Some will say, that these colors were intended to feature of its organization. gratify the Creator's idea of beauty; then what shall we say of all that is ugly, grotesque, and hideous in nature? And reader asks, why we have wasted it upon such fruitless spec theory, than any worse alternative. Is this endowment of such peculiar beauty of any value to the creature itself? It are never very dissimilar.

Does its coloration, as is probably the case with some difficulty appears to lie in remembering two facts, namely, out fairies.

that the perfect state represents but one phase of the insects whole life history; and, secondly, that all parts of an organanother. As far as Nature's use of an insect is concerned, "snatching;" this gives a good hold to the joists, and makes ing childhood, disappear, as years advance, into the category the larval is the really important stage of its existence; the a firm ceiling. Instead of the lathing being executed with reproductive stage, though essential, being only subordinate rows of laths of equal lengths, joined by other rows of similar lengths, the bond should be broken by changing the the hard facts of science; but who that has known them in that do Nature's work in keeping down an excess of vegetathat do Nature's work in keeping down an excess of vegetathat do Nature's work in keeping down an excess of vegetathat do Nature's work in keeping down an excess of vegetation, it is they that have to be especially protected; and as
set to stretch across the joists to which the others have been they may not pass into the realms of reality? Certainly such long as a sufficient number of perfect insects are preserved fastened. This system takes more time than the ordinary sprites must have been a great source of contentment to to maintain the necessary supply of larves, the rest may persystem, and will not be adopted by men unless they are well those ever-childish elders of past ages, who unwaveringly ish. If not enough are being preserved, the perfect insects believed, all their lives, in fairles and goblins; such convenient agents as they were, to whom to attribute all manner of themselves will need protection; but, if too many survive, of the extra labor. It is well to examine the cow hair pronient agents as they were, to whom to attribute all manner of themselves will need protection; but, if too many survive, of the extra labor. It is well to examine the cow hair pronient agents as they were, to whom to attribute all manner of themselves will need protection; but, if too many survive, of the extra labor. It is well to examine the cow hair pronient agents as they were, to whom to attribute all manner of the contract of the extra labor. It is well to examine the cow hair prophenomena that could not otherwise be explained! It was be temporarily disturbed. What a delicate piece of machin- sound, but often it is brought to the building in bags, of short



#### METAMORPHOSES OF THE ATTACUS LUNA.

The peculiar tails at the hinder angles of the hind wings | ready to mix with water, to form mortar or plaster. these eye-spots, of which there is one on each of the wings, of the Luna moth fall into the same category as its coloraare transparent in the center, and are encircled by rings of tion. As appendages to the insect, they have no purpose, fled mold, muffled with plaster of Paris, upon a ground of white, red, yellow, and black; the hinder borders of the There are butterflies, in which such tails, when the insect is hair mortar, and leaving about one third of an inch to be run wings are more or less edged or scalloped with purple brown; at rest, represent the stem of the leaf imitated by the rest afterwards with plaster of Paris and lime purty; this makes a the body is covered with a white kind of wool; the antennæ of the wings; but there are numerous species with tails, in much stronger cornice than is made by the present system, are ocher-yellow; and the legs are purple brown. The wings which there is no attempt at any such imitation; and, in the expand from four inches and three quarters to five inches case of our moth, any such imitative purpose is out of the question, because its wings do not close over the back in re- Plaster cornices often crack through there being common

them to be, one or both, dependent upon some very essential

yet there must be some reason why this moth should be so ulation? We have not, after all, explained why the Luna beautiful; or else, we may better, after all, adopt the fairy moth is so beautifully colored. We admit it; we have mere ly tried to indicate the direction in which such an explana tion may be sought. We know that we all have a habit is not of a sexual character, for, as far as we know, the sexes either of looking upon the beauties and wonders of Nature as utterly without meaning, or, at the best, of putting upon them a shallow interpretation, the first and easiest that closely-allied, but differently colored, species, serve to protect | chances to come to hand; and we have therefore thought it it? On the contrary, the light color would probably render advisable to remind the reader again, that Nature is not an it more conspicuous to its enemies, so that the fairy gift ill-arranged assortment of whims, and that it is quite time would be an injury in disguise. The only escape from our for us all to realize, that in Science at least, we must do with

#### Plastering.

In lathing for plasterwork, says the Building News, laths ism are wonderfully dependent upon, or correlated with, one should break bond-an arrangement technically termed length and quite rotten, and no strength in it. This sort of hair

makes the plaster far worse than it would be without any; the plaster should also be examined before being put upon the ceilings, by holding a little up with the spade; the quality can be detected by the hair hanging down. The finishing coat of pins ter is sometimes set with hair in it; the plasterer picks out the white hair and beats it fine, then uses it with plaster of Paris. The last coat should be composed of about one third plaster to two thirds lime putty. The blotches or streaks sometimes seen in wall plastering are generally the result of bad work, though not so in all instances; a sooty or burnt brick in a wall, will sometimes cause an unsightly patch on the plaster; marks from this cause have been known to come, not only through the plaster, but through the papering also. New ceilings ought not to be whitened; whiting eats into the new work and injures it. Lime for mortar should be burnt but little; much burning destroys its nature; the phrase "lime to be well burnt," is apt to mislead. When sluiced, lime is much better than when slaked in the common way. by sluicing we mean letting it fall to pieces, instead of running it with water; it becomes much more durable for mortar, and especially for pebbledashing in mortar. If, in mixing the lime for mortar or plaster, the least bit remains whole, though as small as a pin head, it will burst in time and throw the plaster off the wall. This explains the bursting occasionally seen on plastered walls. When the lime is run with water, this defect is not so frequent as when the lime is allowed to fall; the latter mode, however, makes a superior mortar, but the lime for this purpose is best prepared two or three months beforehand, which precaution prevents any portion of the lime remaining whole; it involves extra trouble in turning it over, which makes the mortar very expensive. I have known the following practice to be observed in making good mortar: The lime is spread on the ground and a little water thrown over it; the whole is then covered with sand and left for three or four days. The water slakes the lime into a powder; this is then mixed with the sand, and the whole passed through a sieve; it is then

The best way of forming plaster cornices is to run a muf-But though neither the color nor the form of the perfect than the good, and the uneven setting produces cracks. It is

MATERIAL FOR ICE HOUSES,-It is said that one of the best Perhaps-but our column is filled, and the dissatisfied materials for ice houses is peat; but the genuine moss peat must be employed, and it ought to be cut in pieces fourteen inches long and five to six inches wide and thick. When it is thoroughly dried, it proves to be a poor conductor of heat; and when laid up around ice houses above the ground, is preferred by many persons to sawdust, tan bark, and the like. Peat has also been employed in Europe for building dams, and as protections to coffer dams, in laying subaqueous foundations.

> REFINED oil, for fine mechanism, can be prepared by putting zinc and lead shavings, in equal parts, into good Florence olive oil, and placing it in a cool place till the oil be-

#### Improved Screw Wrench.

The object of this invention is to permit the quick adjustment of the movable jaws of screw wrenches where the relative position is changed to receive nuts of various sizes, and thus to save the time occupied in moving it the entire distance by the screw.

The engravings give an excellent representation of the wrench, showing the device in two positions; Fig. 1 showing the wrench adjusted for use, and Fig. 2 showing it in position to permit the rapid movement of the movable jaw to cost \$6,000, and a few citizens have borne the burden. At ter wishes to exhibit two architectural designs; a pair of the place desired.

is itself pivoted at A, and its free end shuts into a recess formed in the projection at B. When thus shut into the recess, the worm engages with the rack, and by turning it slightly the requisite nicety of adjustment is secured. The edges of the worm are milled so as to afford a good hold for the fingers. When the worm is thrown out of its engagement with the rack, the movable jaw may slide along on the shank till it nearly approaches the required position.

A spring catch in the end of the worm pivot engages with a suitable recess in the projection, B, to lock the pivot in its place, when the worm is in the position shown in Fig. 1; and a thumb piece is used to press back the catch when the worm is to be thrown out of gear, as in Fig. 2. When, however, the jaw is to be moved only a small distance, the worm is used in the usual manner.

The thread of the screw nearest the neck in Fig. 2, is beveled so as to readily enter, the rack, which latter is cut in a rib extending the whole length of the back of the shank

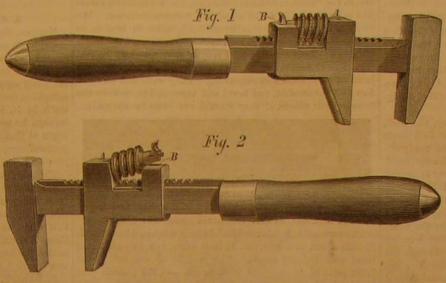
The wrench, in addition to the facility it affords for rapid adjustment, is strong and light, and, we should judge, durable. | ferent parts of the country, providing this be carried to a It was patented Nov. 22, 1870. For further information success. address Conrad Cline, Martinsburg, West Va., or Peter Burress, Braidwood, Ill.

#### EGG TONGS.

Mr. W. F. Hellen, of Washington, table implement, by which hot boiled eggs may be handled without injury to the fingers. The accompanying engraving

shows the device so clearly that no explanation is needed. Lovers of hot boiled eggs will find this article a great addition to the luxury of eating them as hot as desired, as by their use, an egg may be held without discomfort; and the end of the shell being removed, the remainder of the shell forms a cup in which the egg may be seasoned and prepared for eating. Another advantage is, that the fingers need not be soiled by the contents of the shell, when eggs are eaten, as they always ought to be, soft boiled.

### American Iron Ships.

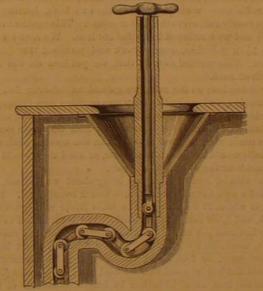

The Wilmington (Del.) Commercial states that on the 11th March, the ship-yards of Wilmington sent away a splendid iron sea-going steamship, of over 1,600 tuns capacity. On the 18th inst., they sent away another iron steamer, intended for the Chesapeake Bay service, of about 500 tuns. Three more iron vessels are now being built in the Wilmington yards, one of which will be a heavy sea-going steam propeller, of 2,000 tuns or over, intended for the Boston and Baltimore trade; another is a Government steamer, built under contract with the Treasury Department; and the other a lighter, of comparatively small tunnage, intended for South America.

It says that the Wilmington yards can build the like of any ocean steamer now in use, except the Great Eastern, and can do the work well and promptly, and adds that they have built more iron vessels than all other yards in the United States put together, which we believe is the

#### The Denver Artesian Well.

The Denver News gives an interesting account of the progress, difficulties encountered, and encouraging prospects of the artesian well, commenced last summer on one of the ing guns of old pattern into breech loaders, a refuge buoy, a hills east of the city. The necessary tools, engine, and men beacon, a cork poncho mattress, a life, limb, and treasure prewere procured, a shaft sunk to the bed rock, and boring commenced. At 250 feet the water rose 80 feet. The strata passed through, being a soft soapstone, there was great difficulty from caving, but the bore was carried down to 430 feet, when casing became indispensable. Two hundred and sixty lite, and an omnitonic flute, all to be shown together! A bookfeet of casing were ordered and put in without trouble, but more was necessary. Two hundred feet more were ordered, but were two months in arriving. Then, after great trouble and some delay, enough casing was put in to make 396 feet, when a slide deflected the column one joint above the lower ing protector for the safety of those employed to note the end. Then came more trouble in straightening it; then came score; a new paddle wheel, by which to secure a greater pound of soft soap, mixed with a gallon of boiling water. the cold December snap, freezing up everything. Since the amount of power than is attainable by any other arrange. This is a cheap lubricator; it insures working with great weather moderated, the pipe has been straightened and boring ment; a self-acting railway signal, for day and night, and case, and clean cutting by the drill.

stratum of fine-grained sandstone entered. With it came a gates from being opened while a train is within a quarter of powerful stream of water, filling the well 300 feet. Then a mile, or any convenient distance; a safety-spring mining came more caving, and drilling had to stop at 535 feet. The cage, to secure the safe lodging, or prevent the falling, of the casing was afterwards driven nine feet, and will be pushed down and drilling recommenced. The water has risen to up or down the mine shaft, should the rope or chain break, within 120 feet of the surface, high above the streets of or become disarranged; a new window sash fastening and Denver, and is pure and soft. It is believed that 250 or 280 door bolt, by which to attain perfect security, from the imfeet further will give a flowing well. The work so far has possibility of unfastening them from the outside. A barrisa meeting of the subscribers it was resolved to ask the city spring-heeled boots, and a drawing of a man equipped with them; diagrams of Coryton's system of fairway lighting off as shown. The movable jaw has, at the back, two projections, which carry the worm and its pivot. The pivot of the worm cess, as it seems likely to be, there is little doubt that the city hand-stamp; models and drawings illustrative of Coryton's




BURRESS AND CLINE'S IMPROVED SCREW WRENCH.

and county both will help the enterprise through. The same machinery will be available to sink many wells in dif-

#### DEVICE FOR CLEANING TRAPS IN SOIL PIPES.

Considerable trouble is often experienced in cleaning the as are too large to be traps of water closets, soil pipes, etc., when they have become cut off by the hook, and clogged. Our engraving shows an ingenious device for this D. C., has patented, in this device, purpose, invented by James Wright, of New York city, and on a handle of proper a very convenient and graceful patented in June, 1867. It consists of a series of links, with length, will save a vast



friction rollers at the joints, connected with a handle which works through a vertical tubular guide. This is a useful implement. Its operation is so well shown in the engraving that further description is unnecessary

#### Curlosities of Genius Relating to Inventions,

It must be taken, we suppose, as a proof of the versatility of genius, that we always find that the professions and trades of these intractable inventors have not the remotest connec tion with their valuable mechanical, chemical, and warlike discoveries. Thus, a clergyman may send breech-loaders and tremendously destructive shells, while the nurseryman and market-gardener proffers improvements in surgical instrumarket-gardener proffers improvements in surgical instru-ments, and the doctor a contrivance for forwarding the ripen-ing of fruit on walls. One grocer demands space for the ex-lighter of a new axle applicable to all carriages a new prohibition of a new axle, applicable to all carriages, a new proectile for ordnance, and a new method of propelling ships. An M. A. and F.R.G.S. has models of an invulnerable floating battery, a breech loading gun and carriage, a means of convertserver, an unfoulable anchor, and some new screw propellers. An accountant asks space for a model of a self-acting watercloset, with water, meter, and apparatus for regulating the flow of water, all in one; the model of an improved theodo seller seems overflowing with invention. He has a plan of interminable suspension, applicable to bridges, aqueducts, etc., of great span or length, and by which he means to do away with the costly supports hitherto used; a target shoot-

recommenced. At 530 feet the soapstone was passed, and a bolts for gates at level crossings, whereby to prevent the

atmospheric guide propeller, and 'Coryton's self-adjusting sails. An insurance broker has specimens of wines and other fluids, fined by a new and more effective process, and a model of the apparatus used; electric telegraph cables and conductors; model of an improved ship, and of parts thereof; specimens of improved pavement in carriage roads; specimens of improvements in iron houses, etc.; specimens of building stone, preserved by a new material; model of a machine for dress. ing stone; specimens of improved junctions of iron pipes, to prevent breakage; specimens of a new description of embroidery; specimens of paper hangings; specimens of an improved floor cloth. These, likewise, are all to be shown together.

[We find the above in one of our ex changes, and we can fully confirm the cor rectness of the theory, that inventions intended for a specific trade are most apt to originate with those who have no connection with the business-mere lookers on, who see what is needed more than they feel it.

#### COMBINED PRUNING HOOK AND SAW.

This combination is a useful and convenient one. The saw is used to sever such branches the tool, when placed amount of laborious climbing, in the pruning of fruit trees. The engraving well illustrates the form and construction of the implement. It is the invention of Jeremiah Schroy, of Fortville, Ind.

Such inventions as this, which require neither large ingenuity in the devising, nor large capital in the manufacture, if they combine usefulness with cheapness, scarcely ever fail to reward their inventors. The

little things that a great many want, pay better than the large ones that are only required by a few.

#### Malt Without Germination.

The process of malting, as is well known, consists in steep ing barley in moisture till germination has commenced, and then roasting the malt to arrest the growth. When done, the product easily yields, to water, a saccharine principle, making a sirup or " wort," easily fermentable; and when fermented, giving a large proportion of alcohol. The time taken in malting, and the troublesome nature of the some what delicate process, has led many chemists to search for means of producing a wort artificially, but as yet the organic matter has defied synthetical imitation. But a new invention is announced, by which a wort can be produced from cent; the vessel is then covered lightly, and placed in a water bath, kept at a steady temperature of 105° Fah. The vessel must be left in the water bath for seventy-two hours, and the contents frequently stirred to insure contact of the acid with all the barley. At the end of the process of steeping, the barley becomes soft and easily crushable, the silica in the bran being destroyed by the acid. It should be dried, and then has the appearance and smell of malt, and, we are assured, makes an excellent wort. The saving of time and trouble are altogether in favor of this process, which the inventor, Dr. Fleck, of Dresden University, has lately discovered, and on which he is now laboring with a view of rendering it easy and practicable on a large scale.

DRILL LUBRICATOR.-In drilling wrought iron, use one

#### Correspondence.

The Editors are not responsible for the opinions expressed by their Cor-

#### Dangerous Olls vs. Dangerous Lamps.

MESSRS. EDITORS:-I notice on page 148 of present volume, that Mr. Chas. B. Mann aims a blow at glass as a mate rial for kerosene lamps. He has hit the nail on the head. So long as the low value of the light petroleum fluids offers large inducements to cheat, all legislation will fall to protect from tallow. us from the horrors of kerosene burning. Of all substances, glass is the most unfit for kerosene lamps. A large portion of the accidents which result in death, are caused, not by explosions, but by the accidental breaking of glass lamps, which may occur in a thousand different ways.

Another large class of accidents, though but little understool, are those resulting from unequal expansion of the glass by heat. Being a very poor conductor of heat, the large amount generated by the burner is concentrated around the collar and top of the lamp, while the lower portion remains cool, causing the heated portion to expand, producing fracture. The lamp falls in pieces, and the overheated oll ig-

Experiment also proves, that in a glass lamp, the heat, which cannot escape, is conducted by the oil in the wick down into the body of the oil, raising the temperature many de grees above that of the outside of the lamp, or the surrounding atmosphere; while in a metal lamp this heat is spread over the whole surface, and is rapidly dispelled by the air, leaving the oil cool. In order to test this matter, I placed, side by side, a glass and a metal lamp, containing the same kind of oil, and using the same kind of burner; the other conditions being as nearly as possible alike. After burning two hours in a room, at 71° Fah., I introduced, through the feeder, the bulb of a thermometer into the oil. In the glass lamp, the mercury indicated 104°, while in the metal lamp it only indicated 794°. The collar and a small portion of the glass fount were very warm, while the main portion of the glass was cool; showing that the temperature of the glass is no indication of that of the oil within.

Many of the burners now in use conduct downwards but little heat, while others conduct an amount sufficient to bring almost any oil up to the flashing point. No glass lamp is safe from accident. I have known a shuttle to fly from a loom, breaking a glass lamp, and setting fire to the mill, which was saved only by the flames being smothered with a large amount of valuable cloth which happened to be handy.

For household purposes, I believe the rule I have adopted, at my house, to be safe. I have one or more lamps in each room, on stationary brackets, out of the reach of chil dren, and only use one lamp to carry about the house. These lamps are all metal, and cost but \$3 per dozen, and are more ornamental than my old glass lamps, costing three times that amount. I believe them to be absolutely safe. My cans are so constructed that the oil, in filling the lamp, is filtered through sand, so that no fire can possibly communicate with the interior. Give us safe, cheap, metal lamps and safe cans, and, in spite of legislative failures, we shall be comparative-J. B. FULLER.

Norwich, Conn.

#### Petroleum Dangers.

MESSRS. EDITORS;-I am glad to see that petroleum dangers are at last exciting the attention they deserve; and it is to be hoped that we shall soon have the proper remedies. I had intended to write an article on the subject, but your last correspondent, Mr. Mann, of Baltimore, has nearly saved me the trouble, by expressing my views exactly: namely, that all petroleum oils are likely to generate an explosive vapor, when long confined with a vacuum above them, and subjected to a moderate heat; and that although thousands of gallons of positively dangerous oils are daily sold by ignorant and villanous dealers, yet the lamps in common use are as much at fau't as the oils, as disasters have occurred with the best of oils. Now this state of things, I think, can be easily remedied, and I would offer the public a few suggestions

First. Let us have lamps so constructed as to be as far as possible proof against accidents, and on such principles that any oll may be burned in them with perfect safety by careful and intelligent persons. Second, Let us have legal enact ments, forbilding, under severe penalties, the sale of all light and volatile oils, for domestic purposes, and requiring all retailers to have their stock inspected, and proved to b unignitable at 110° Fah. Thirl. Let benzine and all the vol-atile products of our oil wells be used in specially constructed careful and competent hands, and in situations where, if an accident did occur, it could do no great damage

I have frequently used pure benz'ne, with great succesand economy, for light and for cooking meals, taking great care to have my lamp so full as to leave but little vacuum and having the wick so tight that the flame could not pas down it; and never letting the bowl get above 80' Fah But, though I could do this with perfect impunity, I should consider myself a murderer if I introduced such a practic to the public, as the world always will be full of people too stupid or careless to be trusted with even tallow candles.

Now, I would point out some of the defects of our common Fragile glass bowls, mounted on high stalks often slightly fastened to narrow bases, itching to be knocked over and broken; short wicks passing loosely through short tubes, the flame only an inch above the bowl, in the top of which explosive vapor more or less always accumulates, as the oil pler and safer plan is to have the top of the burner, with the gulated with a pin or an awl.

With better lamps and good oil, the world may use petroleum, and suffer no more from it than it did in past times LINDON PARK.

Brady, Pa.

#### Wooden Railroads.

MESSRS. EDITORS:-In your valuable paper of February 4th, in the "Correspondence" column, I notice that you would like to hear more in detail about the wooden railroad. built, in 1865, a wooden railroad,  $3\frac{82}{100}$  miles in length, to transport coal, by mule power, to the Ohio River, near Rockport, Ind. The cross ties were mostly split out of white oak, from 7 to 74 feet in length; and the notches were sawn with hand saws, as shown in engraving. They were cut straight down on the outside, and bevel and taper inside, to keep the keys in their places, if they should get loose by shrinkage.



We placed the ties from 2 to 24 feet from center to center. We used the best white-oak rails 3 × 6 inches, and keyed them in with oak, so that the bevel space was filled.

The cars used on this road had 24-inch wheels, 4 inch tread 11 inch depth of flange, and 21 inch axles, run in cast boxes lined with Babbitt metal. The weight of car was about 1,500 pounds, to carry 60 bushels coal-4,200 pounds (the Indiana bushel is 70 pounds); in all about 3 tuns per car. cars ran smoothly and easily for six months, when the rails began to get soft, and to splinter for a quarter of an inch of depth. They were much the worst where the sun shone on them, during the summer months. About two miles of this road was through timbered land, and the rails in the shade lasted much better than those exposed to the

The next trouble we encountered was in frosty weather the splinters or mashed wood would stick to the wheel, and wind around it like rope, until it would run out with the grain of the timber, or break off at a knot.

In less than twelve months the road was rough, and we turned the rails, and replaced some with new ones. Some of the rails were worn down more than an inch, leaving the knots nearly full up to the first measure. This made a rough road; and we concluded to try flat bar iron. We sent for ten tuns 11 × 1 inches, countersunk and punched for 1-inch spikes. This worked so well that we put iron on the full length of road.

By using iron on the rails, we gained as follows: 1st. On the wooden road we had to keep two or three men to keep it in order; as soon as the iron was on, one hand did the work, and had half his time for other work. 2nd. One mule would do as much work as three would do on the wooden road, and the rails would last about four years, or until they would rot and not bear the weight of the cars,

The vein of coal at this place being about worked out, we opened a vein near Yankeetown, V. arrick county, Ind. This vein is about 20 feet above the Ohio River at high-water mark, and 8,530 feet from its bank. We built a road to the river last summer and fall. About 6,000 feet of this road is restle work, on river bottoms, from 3 feet to 16 feet high 10 feet span, 20 feet string timber (6 x 11 in white oak. The old flat bar iron and cars are used here. We used a piece of flat bar iron, about 18 inches in length, alongside of the flat bar at every joint, so that the ends of the iron are not mashed down into the timber to make it rough. This roal is properly gralled, the steepest grade with the loaded cars being 9 inches to the 100 feet. Turee mules bring five cars up this grade, which is on treatle work, 10 feet high, planked with 2-inch lumber. We are not in full operation yet, but expect that one team of three mules will haul from 2,000 to 2,500 bushels per day to the river. We shall put on a small engine, as soon as we are able and fin I one to sait us. A six tun engine would do our work, we believe.

The flat bar iron cost us near \$1,100 per mile; tires, about 12 cents apiece-we used our own timber. (Cutting ties cost 5 cents; sawing notches and trimming out, 5 cents; hauling out of woods, 2 cents.) We had to purchase some oak lum not having enough on our land. Price paid was \$16 p thousand, delivered along the road. We used near 325 th su sand feet of lumber, on the road and a few miners' shanties Our vein of coal is from 4 feet to 4 feet 2 inches thick (what miners call "blasting coul.")

All that we can say to those building wooden railroads is, they will not be long in using flat bar iron on their roads by so doing, they will save many a dollar in the way of re

Narrow gages and light T iron will take the place of the wooden roads in a short time, if cheap railroads are wanted. The T iron is a little more expensive at first, but in two year's time it will pay for the difference in keeping the road in J. M. SPEER, SR., & SONS.

Warrick county, Ind.

#### Payne's Electro-motor.

MESSES. EDITORS:-From the interest I feel in the pro-

also object to the nicked wheel in the tube; though very con. by your article of the 11th inst. In the description given venient for turning the wick up or down, it will not work by the writer who was privileged to see the wonder that is when the wick is tight enough to prevent the flame from to turn the world upside down, he distinctly states that there being conducted downwards by the ascending vapor. A sim- were five magnet cores equidistant in the fixed ring, and six in the revolving set, thereby avoiding any dead center. Now chimney, to swing over on a hinge, when the wick can be any person giving such an arrangement a little attention, will readily come to the conclusion that there must be a dead center in any and every possible position; therefore the engine's moving at all can only be accounted for by supposing that it was, in some way, coupled to the source of power which drove it, which would, at the same time, solve the problem of the brake. It would not be very difficult to ship and unship a coupling by means of the electro-magnet Montreal, C. E.

#### A Circular Saw Eighty Years Old.

MESSRS, EDITORS:-Mr. John Coop came into our fac ory to-day with an old rusty circular saw, about 16 inches in diameter, 18 gage, with four cross-cutting teeth to the inch. and a one inch and a quarter square hole in the center Mr. Coop says that he made the saw; that is, he sent to Birmingham for the steel, and cut out the saw, and filed the tee'h in it, in a dockyard in England, eighty years ago; he says he used it for sawing, running it in a lathe, and calling it at that time a "fly saw." Mr. Coop is now nearly 95 years of age, and made this saw when a boy of about 14 years old.

The old gentleman claims that this is the first circular saw that was ever made in England. I tried to purchase it from him, but he would not dispose of it. He wanted it cleaned up, as he said, to carry to Florida with him, saying that when he dies he means to have that saw with him. Mr. Coop is certainly a rare specimen of longevity and perfect health; he has always lived temperately; eats no meat, never was married, and never has seen a sick day.

Pittsburgh, Pa. J. E. EMERSON.

#### How to Select Right or Left Hinges Instantly.

Mes  $\ensuremath{\mathrm{R}}^{\circ}.$  Editors:—The following simple method of selecting right from left-handed loose jointed butts or hinges, may be useful to many of your readers, as it has often saved me considerable trouble and annoyance in sending inexperienced persons to the stores for such articles: Take up the clo-ed hinge from the counter, and open it from you, holding it in both hands; if you wish for right handed ones, hold fast with the right hand, letting go the left. If the hinge remain intact it is right handed, but if it fall to pieces, or apart, it is left handed. Holding fast with the left hand and letting go with the right, will prove which are which, by a similar test.

I have seen many a score of people puzzled to tell one hinge from another, until I showed them the above simple plan, when it was a mystery no longer. W. A. MACKENZIE.

Eastport, Me.

[For the Scientific American.]

# WHAT BECOMES OF ALL THE STEEL PENS!--THEIR MANUFACTURE.

When at the works o' Messrs. Thomas Jessop & Sons, in Sheffield, Eng., I was informed that six hundred and thirty-one tuns of sheet steel was manufactured and sold in 1868, to be manufactured into steel pens. I was about writing home, and dared not give the quantity, fearing that I was misinformed. Next day I returned to the office, and the clerk turned to the books and showed me the exact figure, which was som thing over 631 tuns. This is from one establishment, others making steel for pens also. Each tun of steel averages about 1,000,000 pens, making a total of 631,000,000.

What becomes of all the steel pens? Is it no: reasonable to presume that the most of them are thrown away? How common it is to pick up a steel pen, the nibs of which are stuck together, to pull it out of the holder and throw it into the stove, and put in a new one! Then this is too soft, or too stiff, too fine, or too coarse, or does not make a fine hair line. For the least trifling fault, it shares a similar fate; and a trifling vexation often empties a whole box into the waste basket. Nobody considers the cost of a steel pen. Well, that's where the most of them go

Now, this enormous and almost incredible quantity of steel for pens excited my curiosity, and I was curious to see how they were made in England. I took a letter of introduction to Mr. Gillott, and, calling on that gentleman, at his manufactory in Birmingham, was cordially received by him in person; and I was conducted through every department of his immense establishment, employing 600 operatives, mocomprising, at that time, thirty-three different varieties. First, the sheet steel, as it comes from the steel works, is cut into strips, generally wide enough for two pens in length; the scale is removed by acid, and the steel cold-rolled into strips. One of these strips is now seen feeding into a machine, which first stamps the name on it; at the next move it is under the die, and cut out into flat blanks. These are then formed into p oper shape, by dies in a drop press, one by one. They are then taken to the tempering room, placed in small sheet-steel boxes, holding about a pint, and heated in a furnace to a cherry red; then poured into a hardening bath of an oil mixture, falling into a perforated dish. The bath is raised, the oil drained out from among them, and they are wiped c'ean. Then they are put into a regular coffee roasier (as I called it), holding about half a bushel, and turned slowly, by a hand crank, over a slow charcoal fire, until the are of a heats and ex'sausts, the looseness of the wick giving free duction of an "electro-magnetic motive power," I am in used holding say half a bushel, and these cans are put into frames, proper spring temper. They are then placed in tin cans, mage from the flame to the wapor; these things a em to to say a w r in relation to the article which appeared in the and run by belts, like a tumbling barrel, until the pens are the a combination poculiarly designed to invite dissect. I Telegraph Journal; and I was very properly placed in doubt pollshed, and all the sharp corners wern off. They are then

ground and polished at the points, on one of the most in- spreads, and a second alarm is given, those who should re genious little machines that I ever witnessed in operation. A small iron cylinder, or wheel, is running horizontally, with a all the force that can possibly be required. slow motion; a grindstone is also running horizontally, with its edge close enough to the cylinder to grind each point, as it turns past its face; next is a polishing wheel, running in the same direction and position, polishing the pen as it passes By an ingenious little spring contrivance, the pen is held until it passes the grinding and polishing wheels, when it is let go, and drops into a box. The operator stands and drops them into the receptacles as they pass.

The next operation is slitting the points; this is done after they are tempered. The instrument used for this purpose is similar to a pair of shears. The pen being placed in a guide by hand, the slit is made just deep enough to cut through the steel and allow the points to spring into place again.

Mr. Gillott claims to be the original discoverer of the process for splitting the pen after it was tempered, performing that operation, in a secret room, for years before the proces was discovered by others. He commenced life as a penknife grinder, and by this simple discovery was led to fortune Slitting them while in a soft state, as was formerly done, left the points open, so that it was necessary to close them by hammering, a most tedious and costly operation.

Mr. Gillott informed me that he imported all of his finer quality of paper from France, for the covering of boxes, as it was not manufactured in England. This establishment consumes about 150 tuns of steel per year.

Mr. Gillott, noticing my fondness for mechanics, called a workman and had him take apart several ingenious machines, explaining to me the several parts. This liberality I very J. E. E. much appreciated.

#### THE WORKING OF THE NEW YORK FIRE DEPART-MENT.

A writer in the Evening Post gives a very interesting ac count of the successful working of the New York City Fire Department.

In 1860, the amount of home and foreign fire insurance capital in this city was \$32,000,000. In 1870 it was \$51,000, 000. The ratio of fires was greater under the old volunteer than under the new paid system, which went into operation in 1865. Each engine house has one steam fire engine, with two horses; and one tender, with one horse, to carry hose fuel, and apparatus. Each of these houses has a company of twelve men. They are provided with comfortable lodgings within the houses, and are, night and day, in constant attendance, except when at meals, which are taken near at hand. It provides the requisite hook and ladder companies of twelve men each, with the same quarters and regulations.

There are now 45 engine houses and 15 trucks for hook and ladder use, making a force of 165 horses and 720 men. There are 5 commissioners, who control the department, a central headquarters, chief engineer, secretary, medical officer, telegraph alarms, bureau of combustible materials, and firemen's library. To these officers are to be added 10 district engineers and 1 chief assistant, who devote their entire time to the service.

#### THE FIRE TELEGRAPH.

The system of telegraphy in use is the patent of John N. Gamewell, but the machinery to carry out a more perfect system for this city-the batteries and automatic street boxes-are the invention and patent of Mr. Charles T. Ches ter, one of the most accomplished electricians. Colonel Stephen Chester, of the Potomac Army Engineers, directed the surveys and the erection of the lines to complete it. The entire work-posts, wires, and machinery-cost about \$600, 000. There are 84 stations, including engine houses, insur ance patrol stations, and officers' quarters, to which to send messages, and 540 street boxes, from which alarms of fire may be sent to the central office. The telegraph alarm appa ratus, under the hand of a good operator, works with a rapidity and certainty before unknown in electrical apparatus. It consists, in brief, of three parts:

1. A receiving apparatus, which has the capacity to receive and note 56 alarms of fire, from all parts of the city, at one and the same time. With this apparatus the modern hotel annunciator is so connected, that it instantly drops a figure showing the line of wire over which the alarm is coming and at the same instant marks, upon a coil of paper, the number of the station. Each of the 56 wires, which together cover the whole city, includes a given number of stations and it required great skill to arrange them that they do not in terfere one with another, since a part or all might be in use at the same time. Fifty-six pens, moved by 56 relay magnets is connected with some one of these 56 wires. The street boxes are so arranged that, when an alarm is to be sent to the central office, the current of electricity, which always flows through the line, may be broken so as to cause the discharge of any one of these little magnets. This works 4 re sults in the receiving apparatus at the office, namely: strikes a loud gong or bell, throws into view the number of the wire on which the alarm comes, starts the register wheel and marks the number of the box where the alarm is made

2, A transmitting apparatus, equally beautiful, instantane ous and perfect in its work.

3. An apparatus for testing the condition of all these wires; for discovering at once in the office any break or in jury within a few yards of its actual locality; or for testing the connection of any of these lines with exterior lines going out of the city.

At all times, night and day, two operators are on duty at the central office. When an alarm is given, the precise engines and trucks which should answer know it. If the fire from the interior, appears to depend entirely, as regards its lbs. per annum.

spond know it; and so of a third, which brings into action rays

#### RAPIDITY OF THE SERVICE.

The horses are all selected, groomed, and kept in the best manner. They are kept in sufficient force already harnessed, and so surprising is their instinct and so admirable their training, when the electric gong strikes in the engine house, they back instantly from the stalls into position before the engine, the doors are flung open, and the engine starts on an average in 22 seconds after the alarm is received, often in 18. An alarm, reaching the central office, is transmitted to every engine house, patrol station, and officers' quarters' all over the city, in 45 to 50 seconds. If we add to this instant movement and rapidity of execution, the most perfect fice apparatus which modern science and skill can devise, the unflagging power of steam, an enlarged and skillful method of instructing the officers and men in classes, which General Shaler, president of the Board, has personally introduced, the effective power of this small force stands in bold relief over that of the volunteers when they numbered even 3,800 men.

The causes which elevate and give a higher moral character to the new force are equally effective. The lyceum, in the hall of the central office, now contains a valuable library of 6,000 volumes, the gift of underwriters and private citizens, comprising largely choice biography, travels, history, and practical science, from which all the members of the force can draw and use. Dr. Charles McMillan, the medical officer of the Board, has done much to this end, in his strict examination for admission to the force, in rejecting men of bad habits or physically unsound, and in maintaining a system of competitive examination for promotion, which rests on merit alone,

#### LOSSES BY FIRE.

The following table of losses by fire from 1866 to 1870 shows unmistakably the good financial results of the system :

| No   | of fires. | Loss.       |
|------|-----------|-------------|
| 1866 | 796       | \$6,428,000 |
| 1867 | 873       | 5,711,000   |
| 1868 | 740       | 4,142,000   |
| 1869 | 850       | 2,626,000   |

Of the 850 fires in 1869, 807 were confined each to one building, showing the promptness and efficiency of the efforts to subdue them.

The cost of maintaining the present service is about \$950, 000 per annum; a sum well invested, when we compare it with the immense losses to which we are exposed, and keep in view the growing intelligence, manly habits, and pride of character which the discipline of the organization most seduoasly fosters. It is most favorable, when compared with the service and the cost of the old volunteer department, The direct cost of that, per annum, was above \$500,000, but the indirect expense in other forms was proved before a committee of the legislature to have swelled the sum to rising \$1,000,000. The above table, from the careful reports of the insurance department, shows a reduction in losses, from 1866 to 1869, of \$3,800,000; and the losses in 1870, since the new tharter went into operation, were \$506,000 less than in 1869, while the moral and effective character of the force has improved more than in any previous period.

#### Is the Interior of the Earth Solid or Fluid?

Although the doctrine that the earth is a molten sphere, surrounded by a thin crust of solid matter, was once almost universally taught by geologists, there have of late years been brought forward several arguments to the contrary, which, apparently, are more in favor of its being a solid, or nearly solid mass throughout; and these arguments are fully entitled to our consideration, as our object is not to defend any particular theory, but to arrive, as nearly as we can, at the truth. I will, therefore, in the first place, proceed to scrutinize all which has been brought forward in opposition to the older hypothesis, and then to consider whether any other explanation yet advanced is more in accordance with the facts of the case

First of all, we are to answer the question as to whether it is possible for such a thin crust to remain solid, and not at once to become melted up and absorbed into the much greater mass of molten matter beneath it? This latter would doubt less be the case, if the fluid mass had any means of keeping up its high temperature, independently of the amount of heat it actually possessed when it originally assumed the form of an igneous globe. The question, however, in reality answers itself in the negative, since it is evident that no t could even commence to form on the surface, unless the sphere itself was at the moment actually giving off more heat, from its outer surface to the surrounding atmosphere, than it could supply from its more central parts, in order to keep the in the Patent Office, thereby assisting inventors and tending whole in a perfectly fluid condition; so that, when once such a crust, however thin, had formed upon the surface, it is selfevident that it could not again become melted up or re-absorbed into the fluid mass below.

This external process, of solidification due to refrigeration, would then continue going on from the outside inwards, until thickness of crust had been attained sufficient to arrest, or neutralize (owing to its bad conductibility of heat) both the cooling action of the surrounding air and the loss of more neat from the molten mass within; and thus a stage would soon be arrived at when both these actions would so counterpalance one another, that the further cooling down of the earth could be all but arrested; a condition ruling at the present time, since the earth-surface, at this moment, so far from receiving any, or more than a minute amount of heat

temperature, upon the heat which it receives from the sun's

We have next to consider the argument that, if the earth's exterior were in reality only such a thin covering, or crust, like the shell of an egg, to which it has often been likened, that such a thickness would be altogether insufficient to give to it that stability which we know it to possess, and that, consequently, it could never sustain the enormous weight of its mountain ranges, such as, for example, the Himalayas of Asia, or the Andes of America, which are, as it were, masses of rock piled up high above its mean surface-level.

At first sight, this style of reasoning not only appears plausible, but even seems to threaten to upset the entire hypothesis altogether. It requires but little sober consideration, however, to prove that it is rather, so to speak, sensational in character than actually founded on the facts of the case; for it is only requisite for us to be able to form in our minds some tangible idea of the relative proportion which the size of even the highest mountain bears to that of the entire globe itself, to convince us, if such a crust could once form and support itself, that it could with ease support the weight of the mountains also. The great Himalayan chain of mountains rises to a maximum altitude of 31,860 feet, or six miles above the level of the sea; and if the earth could be seen reduced in scale down to the size of an orange, to all intents and purposes it would look like an almost smooth ball, since even the highest mountains and deepest valleys upon its surface would present to the eye no greater inequalities in outline than the little pimples and hollows on the outside of the skin of an ordinary orange. If this thin crust of the earth can support itself, it is not at all likely to be crushed in by the, comparatively speaking, insignificant weight of our greatest mountain chains; for, in point of fact, it would be quite as unreasonable to maintain such a disposition, as to declare that the shell of a hen's egg would be crushed in by simply laying a piece of a similar egg-shell upon its outside,

That a very thin spheroidal crust, or shell, enclosing a body of liquid matter, such as an ordinary fowl's egg, does possess in itself an enormous degree of stability and power to resist pressure from without, is easily demonstrated by merely loading a small portion of its surface with weights, as long as it does not give way under them. Even when placed on its side (or least strong position), it is found that a portion of the shell, only one quarter of an inch square, will sustain several pounds weight without showing any symptoms of either cracking or crushing; or, in other words, this simple experiment indicates that if the external crust of the earth were but as thick and strong in proportion as an egg-shell, it would be fully capable of sustaining masses, equal in volume and weight to many Himalayas, piled up one atop of another, without any danger whatever to its stability .- Extract from a Lecture by David Forbes, F. R. S.

#### The Revenue of the Patent Office.

For several years past, the funds received at the Patent Office, from inventors, for the transaction of their business. have been, by act of Congress, turned over to the Treasury, and the Patent Office sustained by specific appropriations, yearly made for that purpose. We desire to call attention to the injustice and unfairness of this matter. The Patent Office is not only a self-supporting office, but its revenues are large and flourishing, and steadily increasing. Transferring to the Treasury, the moneys received by this bureau from inventors and other applicants for patents, is raising revenue from a source whence it should not be done; while appropriating from the Treasury to sustain the Patent Office, tends to create the impression that it does not support itself.

The money paid to this office is not a legitimate source of revenue to the Government. It comes from individuals, and is paid into the exchequer of the Patent Office for a specific purpose, that of facilitating the business of these individuals. It is unjust and unfair to divert a cent of it for other purposes. In our opinion, all the moneys received at the Patent Office should be used solely to carry on the business of that office, and to give increased facilities for the transaction of that business

As the law now stands, we apprehend there is more of delay and obstruction in the dispatch of current work in this office, than there should be. The office is crowded for want of room, and inventors are compelled to wait for months ere their affairs are brought to a final and successful termination. The Commissioner of Patents and his entire force of assistants devote themselves with unusual and most commendable energy and faithfulness to the prompt and speedy performance of their duties, but they find it a matter of impos sibility to proceed as fast as they desire, and as rapidly as the

Every application for a patent, or claim for an extensietc., should be made almost immediately upon its being filed to increase the business of the office. If the Commissioner of Patents were empowered to retain and disburse, as the necessities of the office demanded, the moneys received therein, the speedy transaction of business would be insured. And we think Congress should look into this matter, and change the present mode of transferring Patent Office funds to the Treasury. Its revenues should be expended solely upon itself, and should not be diverted to any other purpose

[We copy the above remarks from the Republican (Washington city), and are glad to find that influential journal intereating itself in Patent Office reforms. The suggestions are worthy of consideration.

THE Glue Works, at Peabedy, Mass., manufacture 2,260,000

#### Knapp's Dovetalling Machine.

This machine is called a dovetailing machine, yet, although it makes an admirable substitute for the dovetail joint, the work it performs cannot strictly speaking be called dovetailing. The joint made by it is shown in the details at the bottom of the accompanying engraving. This joint, which is a combination of scollop and dowel work, will, we think, commend itself to all mechanics who examine it, as not only ele gant in form and appearance, but strong, durable, and easily put together. It, therefore, matters little what name is ap-

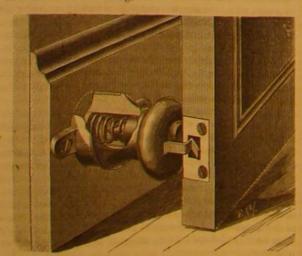
The machine which does this beautiful work is extremely are a flange pulley, and a twenty-inch pulley,

that, in connection with two arbor pulleys, runs a portion of the cutting tools.

On the upper shaft, C, is a pulley, connected by a belt with the flange pulley, and two cams, D and E. The cam, D, moves the tools into and from the stock being worked, while the cam, E, with a pawl attached, plays in a ratchet at the base of the sliding table, F, on which is placed the stock, moving it along to receive the operation of the cutting tools. On this table are placed four pieces of drawer stock, two fronts and two ends, which are securely held in their positions by means of the four compression screws, G G G G. This table carries along the work of two drawers at a time, taking drawers from eighteen inches in depth down; on this table are arranged groove gages, adjustable to the various sizes

H is a binder pulley, worked by a cam and spring, which operates to stop the movement of the tool carriage, I; this carriage contains on the lower tier, a hollow augur that cuts the spindles on the fronts and backs of drawers, and on the upper tier, four tools to cut the ends, a bit that cuts the holes in the scollops, followed by two V tools and a gouge that form the scollop. The three latter tools are on an adjustable head, which may be thrown back or entirely removed while the pins and holes are being made for the backs of the drawers, or for any other purpose; these knives are retained in position by a thumb screw.

The cam, D, in addition to moving the tool ble to suit light and heavy work, by a nut at the back of the


All the parts of the machine are made so that they can be reduplicated, in case of any accident or breakage. The countershafts are of tempered cast steel, and the boxes are all chambered and Babbitted.

It is claimed that an ordinary workman can make from 250 to 300 cabinet drawers per day with this machine, with an expenditure of only fifteen minutes per day in keeping the tools in order.

The machine has, we are informed, been introduced into some of the largest and best furniture manufactories in the country, and is giving the best satisfaction, as attested by many certificates shown us. Parties desiring to witness its operation can do so by calling at the furniture factory of J. T. Allen & Co., 48 Elizabeth street, New York. Further information may be obtained by addressing the Knapp Dovetailing Machine Company, Northampton, Mass.

#### IMPROVED DOOR STOP.

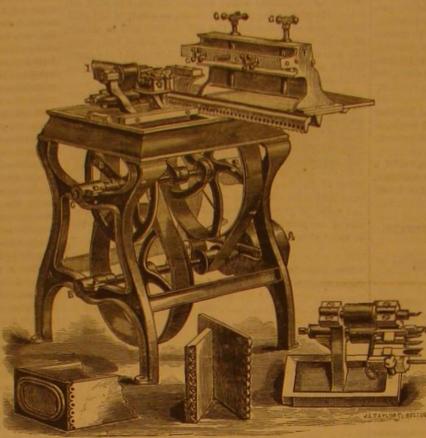
The device herewith illustrated is not open to an objection made to some other elastic door stops, viz., that, when the as to work at an incline of a considdoor strikes the stop, it is thrown back again. In this stop the door is not only stopped without shock, but is caught and held from rebounding.



Its construction will be readily understood on reference to

A hollow pillar of wood, or other suitable material, is at- cast iron. tached to a metallic foot-plate, screwed to the base board, in plate, let into the edge of the door, near the bottom, engages with a spring catch which projects from the hollow pillar.

arrangement of the interior. This cushion receives the shock, while the catch holds the door from recoiling.


will not do for the leveling of very nice machinery, etc.

Patented Jan. 20, 1868. For further particulars ad

Patented May 31 and December 13, 1870. Address, for further information, Fahrney & Donaldson, Rockford, Ill.

Proposed Revision of the English Patent Laws.

Ir appears, at last, that there is hope that the English patent laws are about to undergo wholesome revision. Mr. Hinde Palmer, Queen's counsel, who is reported to be a neat and compact, only occupying about a square yard of floor room. It receives its power from a belt passing over the and proposes to bring in a new bill, based upon sounder places. Be ready to throw in an odd half hour or hour's tight and loose pulley, A, on the lower shaft, B, on which principles. It is expected that Mr. Macfie and Mr. Samuel. time, when it will be an accommodation, and don't seem to



KNAPP'S DOVETAILING MACHINE.

carriage, I, moves a guide pin in and out of the guide holes, son, who go for the get-all-for-nothing principle, will do all, tartar must be added as will go on the point of a knife. The at the base of the stock table, F. The tools are all adjusta- they can to defeat Mr. Palmer's reforms. The patent system object to be tinned is moistened with the tin solution, after in England ought to be amended, so as to recognize the which it is rubbed hard with the zinc powder. The tinning primary right of the inventor to take the patent, and thus appears at once. The tin salt is decomposed by the zinc, meput a stop to the legal stealing of other men's ideas.

#### JOHNSON'S IMPROVED ADJUSTING PLUMB AND LEVEL.

The quick and accurate adjustment of a plumb and level is something which will appeal to the common sense of every mechanic as a great convenience. The level shown in the engraving has attached to it a provision for leveling which is both extremely simple and accurate.

The spirit glass in the level is set in an iron case, which is connected to the top plate by means of the screws, which pass through a flange at each end into a brass nut below. A spiral spring surrounds each screw, and the adjustment or inclination of the level is secured by contracting or expanding either one by means of the screw.

The level can also be adjusted by means of the long spiral springs, so erable angle.

The plumb tube is connected with a pivoted arrangement, which enables it to be adjusted by means of a center screw in the face plate, on the edge of the level. Therefore, to adjust plumb, it is necessary to simply turn the center screw to the right or the left, as the case requires.

The action of the center screw on the plumb tube operates to move it radially about the pivot, a very slight movement of the screw being sufficient to perform the adjustment.

The length of the springs enables the user of the instrument to set his own glasses easily and perfectly, while the liability to breakage is decreased.

A point of superiority claimed for this improvement, besides those already mentioned, is, that the iron case slides on screws which are threaded

greater space, and does not strain the thread of either screw | serted. or nut; while brass will hold a stronger thread than gray

matter how perfect the level may be at first, there is a liabil information, C. H. Thurston, Marlboro', N. H.

In the hollow of the pillar is a cushion of wood or other suitable material, which rests upon a spiral spring, as shown, the extreme delicacy of the instrument, so that while it is a portion of the pillar being broken away to show the perhaps sufficiently accurate for ordinary kinds of work, it

> Patented Jan, 20, 1868. For further particulars address William Johnson, Hedenberg Works, Newark, N. J.

#### How to Keep a Situation.

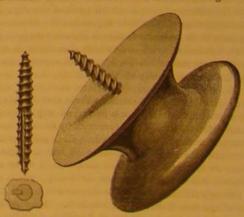
The following bit of good advice is from the Working Man, and is worthy the attention of all our readers:

Lay it down as a foundation rule, that you will be "faithful in that which is least." Pick up the loose nails,

make a merit of it. Do it heartly. Though not a word be said, be sure your employer will make a note it. Make yourself indispensable to him, and he will lose many of the opposite kind before he will part with

Those young men who watch the time to see the very second their working hour is upwho leave, no matter what state the work may be in, at precisely the instant-who calculate the extra amount they can slight their work, and yet not get reproved-who are lavish of their employer's goods, will always be the first to receive notice that times are dull, and their services are no longer required.

#### Method of Tinning Copper, Brass, and Iron in the Cold and without Apparatus.


F. Stolba contributes to Dingler's Polytechnic Journal the following method, of performing the above processes, which we find condensed in the American Chemist: The requisites for accomplishing this object are: 1st. The object to be coated with tin must be entirely free from oxide. It must be carefully cleaned, and care be taken that no grease spots are left; it makes no difference whether the object be cleaned mechanically or chemically. 2d. Zinc powder; the best is that prepared artificially by melting zinc and pouring it into an iron mortar. It can be easily pulverized immediately after solidification; it should be about as fine as writing sand. 3d. A solution of protochloride of tin, containing 5 to 10 per cent, to which as much pulverized cream of

tallic tin being deposited. When the object tinned is polished brass or copper, it appears as beautiful as if silvered, and retains its luster for a long time. The author uses this method in his laboratory to preserve his iron, steel, and copper apparatus from rust. This method would become of great importance if the tinning could be made as thick as in the dry way, but this has not as yet been accomplished.

#### IMPROVED METHOD OF ATTACHING KNOBS TO SCREWS.

Mineral knobs are usually made with screws inserted while the material, of which the knobs are made, is in a plas tic state. Wooden knobs, are, however, usually attached to drawers or doors by passing a screw through the drawer or door from the inside into the knob, which is awkward; or by passing the screw through the knob from the outside, which is unsightly. It is obvious that wooden knobs, provided with fixed screws like porcelain knobs, would be much more con-

This is accomplished in the simple and useful invention illustrated herewith. The screw is made with a gimlet point



at each end, and has a key seat cut in it from the middle to the end which enters the knob. The end having the key seat is then inserted in the knob; and a brad, being driven down into the wood so that it partially enters the wood and fills the key seat, effectually holds the screw, so that it may be screwed in brass nuts below. This enables the box to move through | into a drawer in the same way as percelain knobs are now in-

The manufacture of the improvement, except the driving of the brads, may be done entirely by machinery, and the in-This tool is more especially designed for machinists and ventor has, by this means, undoubtedly opened the way to a such a position that, when the door is swung open, a catch other mechanics requiring great accuracy in levels and much more extended use of wooden knobs than has hitherto plumbs. In the old way of setting the glasses in plaster, no been the case. Patented May 5th, 1868. Address, for further

# Scientific American.

MUNN & CO., Editors and Proprietors.

PUBLISHED WEEKLY AT

NO. 37 PARK ROW (PARK BUILDING), NEW YORK.

O. D. MUNN. S. H. WALES.

VOL. XXIV., NO. 14 . . . [NEW SERIES.] Twenty-sixth Year

NEW YORK, SATURDAY, APRIL 1, 1871.

#### Contents:

(Illustrated articles are marked with an asterisk.) \*Improved Horizontal Steam En-

WE are gratified to announce that General M. D. Leggett the new Commissioner of Patents, has entered upon the discharge of his duties. We have found the Commissioner a very affable gentleman, and are assured by him that he will use his utmost endeavor to bring up the business of the office; and he hopes that he may be able to have cases examined within two or three weeks after they are filed. Gen. Leggett has our best wishes for his future success, and, unless we mistake his character, he will avoid falling into the hands of the lobby clique, who usually attempt to worm themselves into the confidence of every new Commissioner, as soon as he gets into his seat. It has been recently charged, in the press of this city, that favoritism ruled in certain departments of the office. This inference was unjust to ex-Commissioner Fisher, and we believe that the officers, as a body, are high-toned, honorable men; but the Bible maxim, which urges us to avoid the very appearance of evil, is a safe one to practice.

#### PRACTICAL INSTRUCTION IN MECHANICS AND PHYSICS.

Baron Liebig solved the problem of practical instruction in chemistry, by founding a working laboratory in Giessen, more than thirty years ago. Previous to that time, there were no schools of chemistry on the continent, and it was only in the laboratories of private teachers that students were able to acquire a practical knowledge of the science. He met with great opposition at first, and it was only by dint of great perseverance and indomitable will, that he was successful. The professors in the other departments of the University objected to the appropriation of so much money to a science which, at that time, was hardly recognized as of the first rank. They were not permitted to have assistants and servants, and a large building for their special use, and they could not see why a chemist should be more highly favored The young professor was not to be put down, and was finally able to secure the requisite funds for the erection of the fam ous Giessen laboratory. The school, thus founded by Liebig soon become renowned in all countries, and students flocked to it from every nation. The inhabitants of Giessen, in recog nition of the services thus rendered to the cause of education, and as a tangible proof of their regard, presented to Liebig a handsome residence in the city; and the Duke of quired to give notice of the location thereof to the local in-Hesse ennobled him with the rank of Baron.

establishment of the dissecting room was to anatomy. It is scribe a limit of steam pressure, and shall give a certificate now difficult to conceive of there ever having been a time when chemistry was actually studied without apparatus or boiler. The limit desired by the owner shall be the one cerexperiments; but such is the fact, and it is not necessary to tified, if safe, and the hydrostatic test is not to be-unless go very far back to find that benighted period. The illustrious example set by Liebig has been followed in all countries, and everywhere laboratories for chemistry have sprung up and an army of men have been at work making the discov eries which have been of such importance to mankind.

But how does the case stand with reference to physics Where are the laboratories for practical instruction in this dimensions prescribed by the act, which also prescribes mimost important branch of knowledge? Where can the student go for practical instruction in the laws of light, mag netism, heat, sound, electricity, and mechanics? It is true that some of the practice in light he can learn from the pho- a low-water indicator. tographer; and magnetism may be practically unfolded in the office of the telegraph company. The laws of heat are use, if satisfied that such valves are of sufficient size; but are not afflicted with strikes. Nearly all the operatives are so poorly understood that most of this force is wasted in attempts to apply it; and sound gives a very faint report for safety valve must be not less than two inches for one boller; work for; hence their whole aim is to render it successful.

itself in the curriculum of the student. The truth is, we need a Liebig in physics, some one who will found a school where heat, light, electricity, and sound, can be studied, just as the chemist acquires a knowledge of the properties of matter by handling it in his laboratory. Some of our most illustrious physicists have shrunk from making the attempt, as they have been too much absorbed in their own researches, and have not felt that they could spare the time. Perhaps it is well that Arago, Oersted, Faraday, and Ohm, were not interrapted in their studies and discoveries by the necessity of giving instruction to a class of students; and yet it may be queried if they could not have accomplished more by the aid of skillful assistants, just as Liebig, Woehler, and Bansen, have done in chemistry. However this may be, it is with great satisfaction that we observe a movement in England and this country, to establish schools for practical in struction in physics. At Manchester, in England, Professor Stewart is to have a completely appointed laboratory, where the classes can acquire practical knowledge of the use of instruments, where they can perform all the common experiments in physics, and learn how to make original investigations. In fact, the same principles that have been found to apply so well in chemistry, will here be tried and modified as experience may dictate to be necessary.

The same thing is to be done in London. Already at King's College, two large rooms, adjoining the Museum of Physical Apparatus, are fitted up for a physical laboratory and a third room has been built for the battery and supplies. "Fixed tables in both large rooms are supplied with water and gas, and with pipes passing to gasholders containing oxygen and hydrogen; also with thick copper wires, insulated with one another, passing to the battery room, so that, in electrical work, the fumes from batteries are entirely got

"The principal instruments have their fixed places on the tables, and a description of the measurement to be made is given to each student; and, while in progress, his work is examined by the professor or demonstrator. The course of study includes the subjects of pneumatics, heat, light, electricity, and magnetism; and with the regular class a definite order, in each subject, is kept to, as nearly as possible. When, as has sometimes been the case, there are twelve or more students beginning their laboratory course at the same time, it is necessary to deviate from the regular routine, and to set some to begin with heat, some with light, and others with electricity. For some experiments, such as the determination of the relation between the pressure and volume of a gas, or the measurement of the expansion of a gas for given changes of temperature, requiring the use of the manometer and cathetometer, it is found better to have two students working together, each student making in his turn, and so checking every part of, the measurement or determination.'

A somewhat similar plan to the above has been adopted by Professor Pickering, of the Institute of Technology, Boston; and the results everywhere are pronouced to be of the most encouraging character. We see no reason why a school of physics may not be established in every institution where there is adequate room and sufficient capital to bear the expense. Without handling the instruments, students obtain very indefinite notions of the subjects; and as it would now be regarded as absurd to teach anatomy without dissection, or chemistry without a laboratory, so it ought to be pronounced as equally irrational to study physics without practical demonstration.

#### INSPECTION OF STEAM BOILERS IN OHIO.

We have been favored with a copy of an excellent bill introduced in the Legislature of the State of Ohio, by the Hon, T. J. Haldeman. The bill requires the Governor to appoint a theoretical and practical engineer as a supervising inspector, to hold his office for three years unless removed for cause.

The supervising inspector is to appoint a local inspector for each Congressional district in the State, and the local inspector, so appointed, is to be a thoroughly competent theoret ical and practical engineer, removable by the supervisory inspector for incompetency or other sufficient cause. The local inspectors are to be furnished with blank certificates of inspection, and with necessary apparatus (at the expense of the State) by the supervising inspector, who is required to keep a record of all inspections of steam boilers as reported to him by the local inspectors.

Within thirty days after the passage of the act, any person, owning or controlling a boiler in use in the State, is respector of the district, and the inspector, as soon as practica- more than 300 feet. The Tuyara is navigable for large vesof such inspection and limit of pressure to the owner of the consented to by the owners-more than one fourth greater than the working pressure allowed.

The local inspector must satisfy himself that the boiler is of good material and substantially constructed, and of proper proportions in all its parts. He is also to see that the safety valve is well arranged, in good working order, and of the nutely the location and arrangement of gage cocks, and the attachment of steam and water gages. But the owner is allowed, if he prefers it, to attach, instead of the water gage,

The inspectors may pass safety valves on boilers now in

three inches for a battery of two boilers; three and a half inches for a battery of three boilers; for a battery of four boilers, a valve, on each outside boiler, of not less than three inches; for a battery of five boilers, a valve, on each outside boiler, of not less than four and a half inches; and on a battery of six or more boilers, a valve, on each outside boiler, of not less than five inches, and no spring-loaded piston or balance valve is allowed except on locomotive boilers,

This rating of the size of safety valves, in proportion to the number of boilers instead of their capacity for steam production, is defective. Mr. Haldeman should reconsider this feature of the bill.

One hundred and ten pounds to the square inch is fixed as the maximum pressure allowed as a working power for a new boiler forty-two inches in diameter, and of the proper construction and material, and with plates at least one fourth of an inch thick; and the working power of all high-pressure boilers is to be rated according to their strength, compared with this standard. In high-pressure flue boilers, flues of sixteen inches diameter are to have a thickness of no less than a quarter of an inch, and in that proportion of strength for flues of a greater or less diameter. If, on inspection, the local inspector approve the boiler, he is required to make a complete record of the test and inspection, with a minute and particular description of the boiler, and of the dimensions, proportions, and conditions of every important part and appliance thereof, and to certify that the boiler and its appliances are safe, a copy of which record and a certificate is to be given the owner or controller of the boiler.

The bill also provides for the inspection of, and granting to, persons placed in charge of boilers, certificates of qualification, and imposes a penalty of ten dollars for each day they attend a boiler without such certificate.

It requires manufacturers of boiler iron to stamp their plates, at two diagonal corners and in the center of the plate with the letter C for charcoal iron not hammered before rolling; P for puddled iron, and C H for charcoal iron hammered before rolling, together with the name of the manufacturer, and numbers indicating the quality of the iron. And it also imposes a penalty upon manufacturers of boilers who shall use iron not so stamped, for boiler making. If steel plates are used they must be marked steel, and possess a tensile strength equal to that of charcoal hammered plates.

These are the general features of the proposed law; but there are many details omitted in our summary. In short, the bill is extremely minute in its requirements, but we think not too much so to be effective. It will repay a careful reading by those who are interested in perfecting systems of boiler inspection.

#### PROGRESS OF THE DARIEN SHIP CANAL.

A year ago we illustrated the route, for a canal across the Isthmus of Darien, which the experience of many explorers up to that time had indicated as the one preferable to all others. As the readers of our paper are aware, the final result of Com. Selfridge's exploration of the San Blas route was against its adoption. Now the same officer is examining carefully the proposed line of the Atrato river, and at the same time Com. Shufeldt is making a survey of the route across the Tehuantepec Peninsula. The route alongside the Panama Railroad seems to have been passed by, because of the poor harbors on both sides.

The Tehuantepec route, with all its disadvantages, has many earnest advocates; yet it would hardly seem probable that a canal which even its best friends admit must have at least 25 locks, can be adopted as the great highway of nations. There is, too, a doubt as to the supply of water for lockage, which the present survey will either confirm or dispel.

The route vid the Atrato River has been many times reconnoitred, but never in the exact locality where Com. Selfridge is running his line. Trautwine went up to its very source, and passed over the "divide" in a distance of a few hundred yards, and at no great elevation; but that route was utterly impracticable. He again struck an air line from the mouth of the Napipi to Kelly's Bay, a fine harbor on the Pacific, and he estimated the cost of the canal at \$225,000,000. This route was still later surveyed by a Government corps with the same result.

The route now taken by Com. Selfridge is one indicated by Trautwine, as probably affording a better, route than those directly surveyed by him. It enters one of the northern mouths of the Atrato, goes into the main stream, then up the Cascarica river, which flows from the northwest into the Atrato. Leaving this, it strikes the waters of the Tuyara on the Pacific side, passing over an elevation of not must proceed to inspect and test the same. He shall pre- sels for 40 miles from the Pacific ocean, while on the Atlantic side, good river navigation extends up from the Gulf of Darien for 45 miles. Between these points is about 30 miles, the greater part of which will be deepening of the Tuyara river. The Gulf of San Miguel on the Pacific, and that of Darien on the Atlantic, are excellent harbors, landlocked, and having great depth of water. The Gulf of San Miguel is the same terminus as indicated for the route from Caledonia Bay, which we illustrated last year. This is a resumé of the latest information from the Darien Expedition. Accurate surveys may alter these conclusions, and it may yet be determined to use the Panama route, even with expensive docks, or making an artificial harbor, as at Port Said.

> THE material interests of Bellaire, Ohio, are greatly prospering, in consequence of the union of capital, in the nail mills, factories, glass houses, and agricultural works, which

#### SCIENTIFIC EDUCATION AND RELIGION.

with the pen instead of the lance, and aims his blows against the realities of science, instead of against the figments of a distempered imagination. Last year our attention was called to a remarkable instance of such Quixotic undertakings, remarkable, however, only in its utter absurdity. "Creation a Recent Work of God" is utterly beyond the pale of scientific cri icism. It is written to give to the world a new scientific (1) version of creation, and is an endeavor to make geological facts accord with a literal interpretation of the Mosaic record, in opposition to what has been deliberately affirmed by the highest experts in science, as well as by thoughtfu and qualified theologians. The author believes that the entire geological history can be compressed within the limits 6,000 years, and that man lived amongst paleozoic trilobites! And this wonderfully original theory, worthy of the days of Burnet and Whiston, is supported by equally original data and arguments. What will Sterry Hunt say to this passage: "The Psalmist says God founded the earth on its bases,' and modern science teaches that the bulk of the materials of the earth consists of three great acid, alkaline, and neutral bases"? Or Agassiz, to this statement: "In his [man's] first embryonic stage, he resembles a fish; in his second, a reptile; in the third, a bird; in the fourth, a mammal, and lastly, he is a man," etc.? The following, we suspect, must have been plagiarized from the showman of the Cardiff giant: "Scientists say that human flesh will not become fossil, but living witnesses say, a dozen bodies have been found in that state in America within the last twenty five years." "In California a pig, toads, and lizards have also been found petrified;" whilst this is far too good to have been plagiarized from anybody: "The richest deposit of mammals has been found in the secondary series of stratified rocks, and the tracks of quadrupeds, birds and men have been discovered in the old red sandstone, which is the beginning of that series"-a most successful sentence, as it could not possibly have been worded to convey more error! As the enitre book is written in the same strain, the reader may well ask why we draw attention to such a farrago of non sense. We do so, because it is written professedly in the interests of religion, by the rector of an Episcopal church in this city, who should, therefore, we presume, be a clergyman of some educational standing; and because it is not a solitary example, though perhaps it is the worst we could quote of such burlesques of a serious subject.

We have been credibly informed that this book, foolish as it is, has been favorably reviewed by more than one religious paper; and, since our attention was drawn to it, we have seen a brief notice, in the daily papers, of a lecture by another clergyman, which seemed to have been similarly directed against the teachings of geology. From this, we infer that these clerical Quixotes and their lay supporters must be more numerous than we had supposed, and we therefore think it time to say a few words, not against the knights themselves, but in regard to the system of education and moral culture which permits-shall we say, promotes ?the production of such out-of-date champions of medieval

The knight of La Mancha's first bane was his library Now, a library is not a bad thing in itself; but, by itself, it may be worse than useless as an intellectual possession; and the Don lived in his, and forgot for a time the world outside he became a believer in written authorities, whose state ments he had no means of verifying; he passed his existence amidst a waste of words, and lost the use of his own percep tions; and thus, when he wandered into the realities of life animated, as he was, by all the follies of the past, and utterly ignoring or misconceiving the facts of the present, he is wisely represented by the satirist as an egregious madmad.

Had Cervantes been a recent writer, we might have read in his satire a caricature of the victims of our conventional system of education, substituting for the tales, and the phrase ology, and principles of knight-errantry, the study of dead languages, the myths and unapplied lessons of history, and the philosophy of the dark ages. A knowledge of languages ancient and modern, and of history, and of mathematics, are certainly essential elements of a liberal education but, by themselves, not supplemented by other studies and training, they leave their possessor utterly unqualified to meet the requirements of the age in which he lives, and to discuss intelligently the vital questions, social, political, and religious, that at present agitate society. But such ab man thus uneducated, relying upon a knowledge of terms not thing that goes amiss in his business, or in the ordinary realized and formulas not com, rehended, and without any affairs of life, is a man that, as a rule, will accomplish little practical experience in scientific methods of experiment, research, and reasoning, ventures into scientific discussion, thet we find how far he is behind the age. He then becomes actively ignorant, and will assuredly injure any cause that he

every principle of inductive philosophy. Unfortunately, if we take the trouble to test the majority of our so-called well educated men, we shall find in them, unless their education has been leavened by some sound scientific instruction, more or less of these same deficiencies the same in kind, but, thanks to common sense, less in de gree, decreased, probably, by the lessons of practical life. to display their ignorance in print or in the lecture, it is the and most limited supply.

author we have cited is an unusually forcible illustration.

He has evidently never mastered the first elements of the

sciences which he so boldly calls to his aid; and he ignores

want of higher knowledge in the mass that encourages these The race of Don Quixotes is not yet extinct, and Sancho
Panzas are still to be found, to follow the lead of such
Appelts, the modern champion fights, however,

I science they attack, bring ridicule upon the religious does
trines they are supposed to be defending. It seems to us
is questions. We are certain, however, that we never asked
imperative upon those who are interested in religious prois questions. We are certain, however, that we never asked
one of them a foolish question, and we are just as certain character introduced into all school and college education, Its omission from a general education is worse than a blunder. Science is merely the interpreter of the works and the to be uncivil, but it is given in an impatient petulant way, will of the Creator, as recorded by Himself, and no religious mind need fear evil from its progress, nor from the dissemination of the truths it teaches. On the contrary, a fear of possible results of scientific inquiry and, worse still, misstatements, or wilful ignorance and unsound arguments ness of heart makes itself pleasantly felt in all the relations based upon it, are derogatory to the wisdom of the Creator, and are, if used by its advocates, the surest means of injuring the cause of religion. We trust, however, that such travesties of scientific subjects as those here alluded to will yet serve a good purpose; we believe that they will bring qualification. Indeed, this article was suggested by a notable such ignorance of science and of truth as they display into discredit, and thus indirectly promote the development of a foreman in an establishment recently visited by us. It was system of sound and enlightened education.

It is thought that this structure, which is now rapidly approaching completion, will be ready to launch about the middle of May. At a recent visit, however, we found that there were yet many courses of timber to lay, and we hardly think the launch will take place quite as early as anticipated, though there will probably not be much delay

It is thought that, although this caisson will be sunk much deeper than the first one-that is, to eighty feet below highwater mark, to the bed-rock-it will take no longer to sink it on account of the greater ease of excavation in the sandy soil on the New York side. The structure is, however, altered somewhat from the one on the Brooklyn side, to fit it for the greater depth to which it will be sunk, and also in the adoption of improvements suggested by experience gained in the sinking of the Brooklyn caisson. The construction is proceeding at the yard of W. H. Webb, at the foot of Sixth street, on the East river; the contractors for the timber work being the same who built the Brooklyn caisson, Messrs. Webb & Bell. The iron work is supplied by Messrs, Roach & Son, of the Morgan iron works.

The dimensions of the caisson are 102 by 172 feet at the base, the interior chamber being nine feet in hight. The ide walls of this chamber are inclined at a sharp angle toward the center, and the interior is entirely lined with boiler iron. This will obviate the danger of obstruction of the work by fire, which occurred in putting down the first caisson. When completed, the top will be about fifteen feet in thick ness of solid timber, and nearly 400,000 cubic feet will be used in the entire structure. The timber is Georgia pine bolted together by almost numberless drift-bolts and screw bolts of iron, and the structure already presents a most massive and imposing appearance.

The interior chamber is subdivided into six chambers, the walls of which are to be four feet thick when completed The chambers communicate with each other by suitable doors.

The air locks are constructed to give greater convenience in ascending and descending than those on the Brooklyn caisson. There are, to each of them, two separate entrances from the principal tube into the caisson, either or both of which may be used, as occasion requires. No important change will be made in the arrangements of water shafts and pipes for the sand pumps

The lining of boiler iron subserves two important ends namely: the prevention of fire, which, under the great pressure to which the air in the caisson must be subjected, would oth erwise be difficult, and the obviation of the necessity for thoroughly caulking every part of the timber work, to prevent leakage

This is probably the largest caisson ever constructed, and the event of its launching and towing down to its future po sition will be anticipated with much interest.

#### THE MORAL LUBRICATOR.

The great moral lubricator which makes everything in human life run without friction, is good temper. As soon as this is exhausted, the journals of the human machine begin becomes noisy and ruinously wasteful of power.

saying of horsemen, and it is just as true of men as of horses. arily passive, and it is only when a The man that allows himself to get irritated at every little and wear out early. He is a man for whom bile and dys pepsia have a particular fondness, and for whom children have a particular aversion. He is a man with a perpetual thorn, in his flesh, which pricks and wounds at the slightest endeavors to support; and of such active ignorance, the movement; a man for whom life has little pleasure, and the future small hope.

To "keep jolly" under all provocations is perhaps a task which only Dickens' Mark Tapley could perform. We never but we have seen him closely approximated; and it would be inimitable character.

In all the phases, emergencies, and occupations of human life, good temper is a commodity for which there is great

We have often suffered in our personal feelings, from exhibitions, which, without impeding the advance of the science they attack, bring ridicule upon the religious docgress, to have scientific instruction of a broad and liberal one of them a foolish question, and we are just as certain that it is very rare to get a reply from such people, that is not in word, or in manner, uncivil. Perhaps it is not meant very grating to the sensibilities of refined people

Were these men good-natured, they could not help being civil. Civility is as natural to a good-natured man as breathing. Even if rude and unpolished in manner, inborn good of life; while the most polished manners and refined language may cut deep, and leave lasting wounds.

To foremen in shops, and superintendents of large manufacturing establishments, good temper is a most valuable want of good temper, in the treatment of subordinates, by a evident that this establishment was pervaded by a spirit of revolt, begotten by the brow-beating insolent language CAISSON FOR THE NEW YORK END OF THE EAST and manner of the foreman. The men were sulky and obstinate, being undoubtedly rendered unmanageable and restless by the total disregard of amenity in the man placed over them. Surely, thought we, whatever skill in his profession this man might possess, it was dearly purchased at the expense of willing service on the part of the workmen.

When, from any cause, a man is forced to add, to his physical toil, the burden of a discontented mind, he will neither do as much nor as good work as when his heart is light, and his mind easy.

It requires more than technical knowledge and skill to make a good foreman. The power to manage and control men is an essential, which can never be found apart from good nature. Of course we do not mean that sort of "good nature" which results from want of firmness, but that broad, wholesome, breezy heartiness that feels good itself, and leves to have others feel good, and which shows itself as much in rebuke, as in praise.

#### WHISKEY, NEW AND OLD.

A correspondent asks: "Why is old whiskey more pleasant to drink than new-proof being the same? What chemical change takes place by age? and is it more injurious to drink new (same proof) than old?" We do not advise any body to drink whiskey, but we counsel those who have already acquired the bad habit, to confine their attentions to the old rather than to the new. There is always more or less glutinous or nitrogenous matter in liquors derived from starch, even after they have been subjected to distillation; and this undergoes slow oxidation in the course of time, and settles in the bottom of the cask. There is also frequently more or less fusel oil, which is also oxidised and rendered less poisonous in process of time. Hence old whiskey has a less disagreeable taste, and will not kill off quite so rapidly as the new article, which is freshly primed with the elements of destruction. When physicians prescribe whiskey as a medicine, they direct the patient to use the old article, as experience has proved its greater efficacy. It is only as a medicine, and in small quantities, that a liquor of this strength ought to be employed.

It contains so much alcohol that it abstracts water from the tissues, converting them into a species of parchment; and while it stimulates for a short time, the re-action leaves the system weaker and more exhausted than before.

#### DANGEROUS DENTISTRY.

An article with the above caption has been sent to us for criticism. It is well known that the best substance with which to give the peculiar flesh tint to india-rubber is vermilion; and as a considerable quantity of this compound must be used, it is natural for persons, who make the study of mercurial poisons a specialty, to raise the inquiry how far hard rubber in dental plates may be the source of disease. A question of this kind can only be determined by a careful record of cases, made by dispassionate physicians. We are not in a condition to decide it, but we would suggest the possibility of the opposition to hard rubber plates having its origin in the desire of interested parties to make a larger margin of profit from gold plates. Hard rubber plates are to heat, and wear, and screech, and the entire mechanism cheap, and it is for this reason that many poor persons can have a full set of false teeth, when, if the old price for gold "The horse that frets, is the horse that sweats," is an old plates were maintained, they would be compelled to do with-

Vermilion is sometimes prepared by dissolving sulphur in caustic potash, and shaking the liquid well with metallic mercury-the red powder settling in the bottom. The sulphur is not considered dangerous, and it is very uncertain whether the mercury becomes separated from the sulphur ina way to produce injurious effects. The testimony of physicians would be valuable on this point, but sensational articles by interested persons, ought to have little weight.

NITRO GLYCERIN AGAIN .- On Sunday morning, March 12th, seven hundred pounds of nitro-glycerin exploded, in a small have met Mark Tapley in our experience of human nature, wooden building on the west side of the Hoosac tunnel. The building was of course blown to splinters. The cans, in well if people in general could approach more nearly that which the glycerin was kept, were spread out in ragged shapes. A young growth of birch and maple was cut through for a distance of twenty rods, the path being six rods wide. The trees, three inches in diameter, were torn and twisted demand; but in those which bring an individual into daily into withes. The village of North Adams, two and a half However few the number of such men who feel called upon contact with many others, it is perhaps in greatest demand miles distant, was shaken as if by an earthquake. No lives were lost, but the explosion was terrific.

#### OBITUARY NOTICES.

DEATH OF JOSEPH POOLE PIRSSON.

One after another, our cotemporaries are passing away Last week we announced the death of Mr. Aaron R. Haight, for many years employed in our office, and now we have to chronicle another death, that of Joseph Poole Pirsson, who died at his residence in this city, on March 17th. Mr. Pirsson was the son of Joseph Poole Pirsson, a prominent member of the New York Bar, and distinguished as a chancery practitioner. The subject of the present obituary notice was, by profession, a civil engineer and solicitor of patents, possessing superior knowledge of practical and theoretical mechanics. As a solicitor of patents, he attained a 'arge practice, and was skillful and comprehensive in the preparation of his cases. He published several useful works relating to his profession, the most prominent of which was entitled, " Laws and Practice of all Nations and Governments Relating to Patents and Inventions." The Eureka, a magazine devoted to Mechanism, Inventions, Patents, Science, and News, was also published by him and his partner, Mr. Kingsley, now deceased, who also assisted in the preparation of the above-mentioned treatise The magazine was discontinued in 1850 or 1851. It was well conducted and well patronized, and was also one of the first of that kind of publications printed in the United States. Mr. Pirsson was also the author of a set of forms of patent practice, which were very generally used at home and abroad. He was also an inventor of considerable skill, and the originator of the "Pirsson Condenser" for supplying marine engines with fresh water, the first successful invention of the kind. It was not only placed in many of our first vessels of the mercantile marine, but in vessels of the United States Navy. Mr. Pirsson derived, for a time, a handsome revenue from this invention, but it was subsequently extensively pirated. He was well read in elementary chemistry, and an enthusiastic astronomer. He was also well read in ecclesiastical history, and the traditions of the Protestant Episcopal Church, of which he was a zealous and active member. He was an amiable and estimable citizen, and highly esteemed in the private relations of life. He was obliged, some years since, to withdraw, on account of ill health, from the large and lucrative practice he had secured, and though he rallied for a time upon the cessation of his labors, he never fully recovered his health. His remains were interred in Trinity Cemetery, the funeral being largely attended by the most distinguished citizens of New York.

#### DEATH OF PROFSSOR WETHERILL.

We regret to have to announce the death of Dr. Charles M. Wetherill, Professor of Chemistry at Lehigh University, Bethlehem, Pa., which took place on March 5, 1871. Professor Wetherill had acquired a national reputation by his researches and publications, more particularly in agricul tural and organic chemistry. He was at one time connected with the chemical laboratory of the Agricultural Department in Washington, and at that time made an exhaustive investigation into the chemistry of American wines. He also published an important paper on the peculiar fat of dead bodies, called adipocere. His loss will be severely felt, not only by the institution with which he was connected, but by the country at large.

DEATH OF WALTER B. FORBUSH.

Mr. Forbush, who was killed at the recent New Hamburgh disaster, was a solicitor of patents at Buffalo, N. Y.

He was a son of E. B. Forbush, who was also killed, at

the disaster at Angola, several years ago.

At the time of his death, Walter B. Forbush was about thirty years of age, had a good business, and was noted for his clear understanding of mechanical inventions, having been gifted by nature with a remarkable mechanical mind. He left a wife and three children, and we are pleased to learn that his life was insured for \$25,000; consequently his family is left in comfortable circumstances.

#### SCIENTIFIC INTELLIGENCE.

REMEDY FOR PESTERING WOUNDS AND CANCERS.

Professor Böttger recommends gun cotton, saturated with a solution of permanganate of potash, put up in the form of a poultice, and held over an open wound by a bandage, as the best disinfectant for bad odors that can be conveniently applied. The strength of the solution of permanganate, bes adapted for the purpose, is one part, by weight, of dry salt in one hundred parts of water.

Ordinary cotton cannot be taken, as it readily decomposes, but gun cotton is permanent, and not liable to explosion when oak and several others, were not spared. Besides, the com-

LIQUID FOR ELECTRIC BATTERIES.

According to Dr. Bradley, there is a wide difference in the composition of these liquids. We subjoin some of the most approved admixtures: One consists of 800 grammes water, 50 grammes bichromate of potash, 50 grammes sulphuric acid, and 2 grammes chromic acid.

McCracken liquid: 1 pound bichromate of potash, 1 gallon

of water, 3 pounds sulphuric acid.

Poggendorff liquid: 3 pounds bichromate of potash, 4 pounds concentrated sulphuric acid, 8 pounds (1 gallon)

U. S. Telegraph Company's liquid: 5 gallons water, 6 pounds

bichromate of potash, 1 gallon sulphurle acid.

Western Union Telegraph Company's liquid: 18 pounds water, I pound saturated solution of bichromate of potash, 1 pound sulphuric acid.

ounces water, I fluid ounce sulphuric acid, 1 ounce bichro-

#### PRESERVATION OF WOOD UNDER WATER.

A correspondent inquires if there are other substances be sides chloride of zinc that have been used for protecting timber under water. We find an elaborate paper, by Dr. Ott, in the Journal of Applied Chemistry, which may serve as an answer to the inquiry. A committee of sacants was appointed, by the Datch Academy of Sciences, to conduct experiments and in their report, they classify the experiments into three groups: First, the coating or alteration of the surface; second, the impregnation with various preparations; and third, the use of timber different from that usually employed.

I .- THE COATING OR ALTERATION OF THE SURFACE.

In this group the following alleged remedies were tried:

1. A mixture of tallow, coal tar, resin, sulphur, and powdered glass, applied warm, upon the previously roughened wood, to the thickness of several millimeters.

2. Paraffin varnish, obtained by dry distillation of peat.

3. Coal tar, applied cold and warm upon the superficially charred wood. Into some piles, holes were bored, which were stopped up, after being filled with the hot tar, which then had a chance to penetrate into the interior. Others were coated with a mixture of coal tar and oil of vitriol, to which some sal ammoniac and olive oil had been added.

4. The piles were coated with a paint consisting of linseed oil, turpentine, chrome green, and verdigris.

5. The surface was carbonized.

The thus prepared piles were immersed in May, 1859; on being examined in September of the same year, it was found that, with the exception of the wood mentioned in No. 3, after one year and a half, the wood treated with coal tar was also thoroughly infested by the worm. From the results of these experiments, it seems therefore to be fully established that, although external coating may for some time prevent doem the subject worthy of serious discussion, but it is inter the attaching of the larvæ and young worms, the least abrasion, such as may be caused by floating ice or other means, or the cracking of the wood, will allow the entrance of the teredo to an injurious extent.

II .- THE IMPRESNATION WITH PREPARATIONS.

Under this head trials were made with:

1. Sulphate of copper,

2. Sulphate of iron.

Acetate of lead, which proved ineffective.

4. The wood was first impregnated with soluble glass and then with chloride of calcium, in order to form a silicate of lime in the interior. Before being immersed, it was exposed might be complete. In March, 1863, the wood was sunk into benefit in saving of time. the sea, and in October of the same year was found to be thoroughly invested.

5. Oil of creosote.—This is a well-known product of the dry distillation of coal, which, in being subjected to a second distillation, is freed from the very volatile as well as from the semi-solid portions. In May, 1859, creosoted piles were immersed in different harbors, and when examined in the following September, no indications of the worm could be this paper. discovered, while non-creosoted piles were thoroughly infested. Another trial was made in July, 1860, with ten piles of oak and pine, saturated in the same manner; later on, piles of beech and poplar were immersed, which had been treated by Boulton, in England. On examining these piles in the falls of 1862, 1863, and 1864, they were all found to be perfectly sound, with the exception of the piles of oak; while the non-prepared woods were more or less affected by the worms. In sawing through one of the oaken piles, it was ascertained that it had only been partly saturated. However, the iles of pine, beech, and poplar, treated in the establishment of Boulton, presented in 1864-or after three years' exposure-not the least indication of the teredo, and, after detaching the outer portions, they resisted equally well. The same result was obtained with piles, saturated by a firm in Amsterdam, that had been exposed for five years.

Of the non-impregnated piles, nothing had been left but the small head pieces projecting beyond the surface of the water. The rest had become a spongy mass, yielding to the least pressure. Petroleum had been recommended to the committee, but, owing to its high price, no experiments were undertaken with it.

#### III.-USE OF EXOTIC TIMBER.

With regard to exotic woods, the experience of the committee is but moderate. It can only be stated, with certainty, that some kinds of wood from Surinam, the American mittee was presented with a perforated piece of heavy guamittee was presented with a perforated piece of heavy gua-jac wood, which had been laying in the sea, near Curaçoa, a of your correspondents.—W. H. B. proof that even the densest wood is not impregnable. Finally, the committee had received information about various woods, reputed to be poisonous, and by which the fishes are said to become stupefied, and die, but no opportunity was afforded to experiment with them We are assured, however, that the Dutch Government is making investigations in regard to this matter in the East and West Indies

The report of the committee may be summed up as fol-

1. That mere external coating with paint or other substances furnishes no protection, since it is impossible to maintain an unbroken surface; the young teredo will enter the slightest crack or abrasion. The lining with iron, copper, or zinc plates, or the driving full of broad-headed nails is not only expensive, but protects the timber only as long as Newton's solution for destroying organic matter: 12 fluid the lining remains perfect; and since this is impossible, it is of

2. Impregnating timber with soluble inorganic salts, which | ketable again?-R. A.

are poisonous to animal life, constitutes no protection, owing, firstly, to the fact that the teredo does not nourish itself from the ligneous tissue, but simply perforates it in order to secure a lodgment; and, secondly, to the circumstances that the water washes out the salt.

3. The density of the wood, as far as known, is of no avail. 4. The only true protection against the worm is found to be creosote oil, to which attention ought to be directed, as well as to the kinds of wood most absorbent of it; and to the most effective methods of impregnating it with this material.

The experiments were conducted in salt water, chiefly in reference to the teredo or ship worm, but they apply equally well for fresh water. In Germany, extensive use is made of chloride of zinc, by placing timber in boilers, partly exhaust-ing the air, and driving the vapor of chloride of zinc into it. The amount to be taken can only be determined by experiment. Metallic zinc has also been used in a similar way.

#### ENDLESS PLATFORM BELT RAILWAY FOR NEW YORK.

There has been no end of schemes, mostly absurd, for steam conveyance to accommodate the local travel of New York. We leave it to the reader to decide in what category a plan proposed by Mr. Robert Taylor, of 527 West Twentysecond street, New York, should be placed. The plan proposes that a series of endless rule-jointed aprons, running side by side, should be kept in motion by steam power, and extend entirely about the city, elevated, of course, and skirt-ing the coast of the island. The outside one is proposed to be moved at three miles per hour, and each one in the succession inward is to move three miles per hour faster; so which only presented traces of the teredo, none of the pre- that three being employed, the inner one will run at nine parations had furnished protection. In the fall of 1860, or miles per hour, the maximum speed. Mr. Taylor thinks it will be easy for people to step upon the outside apron, and from that to the next, and so on to the last, where they can be seated until they reach their destination. We hardly esting, as being one of the many curious ideas, evolved by the pressing needs of the city for better traveling facilities.

TELEGRAPHIC COMMUNICATION WITH THE EASTERN WORLD.—The attention of the New York Chamber of Commerce has been called to the pressing necessity of establishing a submarine cable under the Pacific ocean, and placing this continent in electric communication with Japan, China, and the Sandwich Islands. There is enough telegraphic traffic to pay good dividends on the outlay. Even at present rates, vid Europe, namely, about \$50 gold for twenty words, the number of messages forwarded is considerable; and, besides to the air for half a year, so that the chemical combination the inducement of low rates, the new cable would be a great

> THE DAVIS' SEWING MACHINE, manufactured at Watertown, N. Y., has been before the public some ten years, and is probably familiar to many of our readers. The Company, having recently greatly increased its facilities for supply ing this machine, now calls for agents throughout the United States and Canada, as will be seen by its advertisement in

> WHITE SPONGE.—Sponge can be bleached by soaking it in a weak dilution of hydrochloric acid, which removes the calcareous matter, and then washing it several times in cold water; after which it must be soaked in water holding a little sulphurous acid, or chlorine in solution.

> A MAN in England has recently patented a hand gardenseed sower, which, he claims, will always drop just the desired number of seeds, and thus save the after-expense and trouble of thinning out.

#### Queries.

[We present herewith a series of inquiries embracing a variety of topics of greater or less general interest. The questions are simple, it is true, but we prefer to elicit practical answers from our readers, and hope to be able to make this column of inquiries and answers a popular and useful feature of

1.—Shellac Polishing.—How shall I prepare and use shellac, for polishing on a wheel?-J. L.

2.-Soldering Cast Iron.-In my query No. 5, in issue of March 4th, please substitute chloride of zinc for chloride of lime. - W. L. B.

3.-YELLOW RAIN.-We had a rain storm, at New Orleans, on the night of March 8th, leaving on the pavement a deposit of something resembling sulphur in color, but not having the fumes of sulphur when I would like an explanation from some

4.—Stove Polish.—Will some of your numerous readers please give me a good preparation for polishing stoves—something that does not require so much rubbing as the usual compounds do ?—W. J. N.

5.—Grinding Ocher, etc.—I wish to learn how to reduce a substance like chalk or other to a very fine powder. Is there any process better than grinding through mill stones? Is there any process of separating the same better than a boil such as is used in flour mills? A No. 12 holt is not fine enough. What is the advantage of running the under mill stone, and how large diameter can such a stone be run to advantage?—C. E. H.

6.-Wire Springs,-How can iron wire be tempered, so as to make good clastic springs?

7.-DISTILLING ESSENTIAL OILS.-Can the oil be distilled from wintergreen or peppermins, by connecting a steam pipe from a boiler to the still, just as well as by setting the still in a furnace?—A. V. S.

8.-Frosting Silver.-How can polished silver be given frosted appearance?-D. E. K.

9 .- CLARIFYING OLIVE OIL .- I have some olive oil that is become discolored by standing. How can I render it white and mar-

### Answers to Correspondents.

CORRESPONDENTS who expect to receive answers to their letters must, in all cases, sign their names. We have a right to know those who seek information from us; bendes, as sometimes happens, we may prefer to

All reference to back numbers must be by volume and page

BURSTING OF FURNACE.—In answer to your correspondent's query, I will say that I have witnessed about a dozen explosions of furnaces within the last six months. In all these cases the roof was blown off; and, in a few of them, workmen were seriously burnt. I believe the explosion is due to the sudden conversion of water into steam of high tension. This happens in the least harmless way, when you strike with a wet hammer on a white hot tool, or when you drop the end of a hot tool into the liquid clinder in a furnace. In either case steam of high tension, and under some pressure, is suddenly formed. If the cinder be very hot, and the wet surface very large, and the weight of the body considerable (e.g., a wet brick or a bucket full of water), the explosion will be as certain as serious. A careful puddler, in cooling off a furnace, will at first throw only small quantities of water upon the foreplate, or against the sides of a furnace. In this way the water spreads harmlessly on the hot cluder. I have known such puddlers to work furnaces for twelve years, without blowing up a single one. It is the general opinion of puddlers that small pieces of scale or cinder, in the water thrown in, cause the explosion, but I doubt if this be emfletent for a serious explosion, especially as they will, at every heat, sweep small pieces of cinder off the freplate into the furnace when throwing in water. Accordingly, the certainty and force of the explosion will stand in a definite ratio to the temperature of the cinder, the area of the wet surface, and to the rapidity and force with which it is brought into contact with the hot cinder.—P. M. B., of Pa.

SOLDERING CASTINGS.—W. S. B. can solder gray cast iron as BURSTING OF FURNACE.-In answer to your correspondent's

SOLDERING CASTINGS .- W. S. B. can solder gray cast iron as follows: First dip the castings in alcohol, after which, sprinkle muriate of ammonia (sal ammoniac) over the surface to be soldered. Then hold the casting over a charcoal fire till the sal ammoniac begins to smoke; then dip it into melted tin (not solder). This prepares the metal for soldering, which can then be done in the ordinary way.—J. R., of Mo.

SPINNING TIN PLATE.-It is not practicable to spin common tin plate like brass, (except in the form of plates or covers). But T. J. R. can take the iron without the plate, and make it red hot, spin it or press is, and afterwards plate it. If he fail in this modus operandi, let him hire a practical man to work it out for him.—J. R., of Md.

L. A. M., of Mass .- There is no difficulty in dissolving amber L. A. M., of Mass.—There is no difficulty in dissolving amber in chloroform, but people are apt to think they fall, from the circumstance that it is only partially soluble. Take some broken amber mouth-pieces of pipes (your tobacconist will set you up with them), reduce to a coarse powder and place in a bottle with rather more than enough chloroform to cover them well; shake often, and in a few days if you try it by pouring a drop or two of the clear liquid on a glass plate, you will find you have a varnish of good body, which gives a strong glaze. Or you can make an amber varnish as follows: Take of amber, 3 ounces; benzole, 50 ounces; heat the amber in a closed vessel to a temperature of about 530° Fah. When it begins to soften and swell, emitting white fumes, then dissolve in the benzole.

R. H., of Ala.-To prepare a plaster cast for electrotyping first dry the plaster cast in the oven thoroughly, then get equal parts of beeswax and common resin, melt them together, and boil the cast until i will not absorb any more; when cold, get some good blacklead and cove the cast entirely, not thick but a bright surface, then you can electroplate

SILVER SOLDER .- Let your querist get 1 pwt., of pure silver and 36 dwt. of common pins, and melt them together; he will have an easy flowing solder, but must use a gas jet to solder with.

C. D. of Ga,-You can cement cloth to polished iron shafts by first giving them a coat of best white lead paint; this being dried hard coat with best Bussian give, dissolved in water containing a little , vinega

PASTE THAT WILL KEEP .- Take one tablespoonful of flour, add gradually one pint of cold water; boil slowly, and stir well to preven burning, till it thickens. Keep it boiling till it becomes thin; then add on teaspoonful of nitro-muriatic acid, and boil till it again thickens, when i is ready for use. This paste is harmless, cheap, and less difficult to pre pare than the formulæ in your last issue, and will neither turn sour no

CEMENT FOR GLASS SYRINGES.-Let P. E. G. take resin two parts, gutta percha one part, melt together over a slow fire, apply hot, and

SOLDERING FLUID.-Let C. W. take muriatic acid and disolve as much zine in it as the acid will take. - J. K., of Mo

COATING FOR BOAT BOTTOMS.-Let A. A. B. take 5 gallons boiled linseed oil, 4 gallons raw oil, 1 gallon benrine, and 80 pounds Rocky Mountain vermilion.—H.

Ivony KEYS .- To glue on the ivory veneers, let J. H. take two parts pulverized gum arabic, and one part calomel, and add water sufficient to make a paste.—H.

PULVERIZED SOAP,-To pulverize hard soap, let M. B. C. pare it very thin with a hot knife, or spatula, and pulverize it in a mortar. - H.

PAINT FOR OLD WEATHER BOARDING-The recipe for coating for boat bottoms, given above, is also excellent for old weather boarding.-H.

W. R. B., of Wis,-You can carry steam 200 feet from boiler to engine, without serious loss. We advise you to use the cement feltin noticed in our last issue. Use a 1%-inch pipe, which, though larger tha

W. A. M., of Me.-We are of the opinion that iron rails made of cast iron, cast upon wrought iron bars, would not prove desirable it

C. O., of ----- Any hollow sphere containing an will not float as high on the surface of water, as the same with the air e

S. P., of Quebec,-The filling of your mill with smoke from the forges is owing to the flue having too small capacity. The smoke an gas discharged into the mill is decidedly detected to the workmen.

H. R. O., of Mass.—It is probable that the acids used in mak ing shoe polish do injure the leather more or less. Their action is, how ever, not very decided. In the recipe given recently in this column, in our issue of March II, we think there is too large a proportion of acid, for a

B. Y. C., of Va .- We know of no cheaper pipe than the tin lined lead pipe that combines all the regulatics of a first-class water pipe

D. C. R., of Ill.-We have not investigated into the nature of the anti-incrustation powders to which you refer, but we have usually found such preparations harmless.

#### "Among the Live and Progressive Institutions

Of the day is Geo. P. Rowell's Advertising Agency, No. 40 Park Row, New York. The establishment is so systematized, and their facilities so ample that the public is sure of being served in the most complete manner."—Bos

#### Business and Lersonal.

The Charge for Insertion under this head is One Dollar a Line. If the Notice exceed Four Lines, One Dollar and a Half per Line well be charged.

For the best and cheapest Lubricating Oils, for Sewing Ma chines, Engines, and other Machinery, send for Price List and Samples, to Chard & Howe, Manufacturers, 184 Maiden Lane, New York.

The paper that meets the eye of manufacturers throughout the United States-Boston Bulletin, \$4 00 a year. Advertisements 17c. a line.

Blake's Belt Studs.—Cheapest, strongest and best Belt Fas tener in use. Old Belts that will not hold lacing can be fastened with stude and wear till the belt is worn out. Greene, Tweed & Co., 10 Park Place

Oak-Tanned Leather Belting.—We make an extra quality cheapest for the consumer. Greene, Tweed & Co., 10 Park Place

Patent Dealers send address to Box 144, Cuba, N.Y.

Carpenters wanted-\$10 per day-to sell the Burglar Proof Sash Lock. Address G. S. Lacey, 27 Park Row, New York.

Manufacturers' and Patentees' Agencies, for the sale of man ufactured goods on the Pacific coast, wanted by Nathan Joseph & Co., 619
Washington street, San Francisco, who are already acting for several firms
in the United States and Europe, to whom they can give references.

Columbus, O., Feb. 27, 1871.—Messrs. McBeth, Bentel & Mar gedant:—Your Universal Wood Worker is giving entire satisfaction. Shall be most happy to inform any one of the many advantages that it certainly possesses over any other wood-working machine with which I have had experience. Yours truly, M. P. Ford, Master Car Builder, P. C. & St. L. R. R. Co.

Send Circulars and Price List of New Goods, suitable for Agents, to Novelty Agency, St. Louis,

Controlling interest offered in the best Piston Meter. Claim to superiority verified beyond doubt. Box 3675, New York.

See advertisement of a Woolen Mill for sale. A bargain.

Pattern Letters for Machinists, Molders, and Inventors, to letter patterns of castings, all sizes. Address H. W. Knight, Seneca Falls, N. Y.

Gage Lathes for Broom and other handles, Chair Rounds, etc. Price \$20. With attachment for Null work, price \$30. Also, Wood-turning Lathes. A. L. Henderer & Co., Binghamton, N. Y.

Diamond Carbon, of all sizes and shapes, furnished for drilling rock, sawing and turning stone, conglomerates, or other hard substa-also Glazier's Diamonds, by John Dickinson, 64 Nassau st., New York-

A complete Paper Collar Factory for sale cheap, Capacity 80,000 per day, ready for immediate operation. Price \$5,000; terms easy. Apply to B. R. Western, Room 20, 37 Park Row, New York.

Improved mode of Graining Wood, pat. July 5, '70, by J. J. Callow, Cleveland, O. See Illustrated S. A., Dec. 17, 70. Send stamp for circular

All parties wanting a water wheel will learn something of interest by addressing P. H. Wait, Sandy Hill, N. Y., for a free circular of his Hudson River Champion Turbine.

Ashcroft's Low Water Detector, \$15; thousands in use; 17 year's experience. Can be applied for \$1. Send for circular. E. H. Asheroft, Boston, Mass.

Self-testing Steam Gage. There's a difference between a chronometer watch and a "bull's eye." Same difference between a self-tester and common steam gage. Send for Circular. E. H. Asheroft, Boston, Mass. \$3.50. Stephens' Patent Combination Rule, Level, Square,

Plumb, Bevel, etc. See advertisement in another column. Agents wanted American Boiler Powder Co., Box 315, Pittsburgh, Pa., make

the only safe, sure, and cheap remedy for "Scaly Bollers." Orders solle Belting that is Belting .- Always send for the Best Philadel-

phia Oak-Tanned, to C. W. Arny, Manufacturer, 301 Cherry st., Phil'a. E. Howard & Co., Boston, make the best Stem-winding Watch in the country. Ask for it at all the dealers. Office 15 Maiden Lane, N. Y.

For mining, wrecking, pumping, drainage, and irrigating machinery, see advertisement of Andrews' Patents in another column

The best place to get Working Models and parts is at T. B. Jeffery's, 160 South Water st., Chicago.

Brown's Coalyard Quarry & Contractors' Apparatus for hoisting and conveying material by iron cable. W.D. Andrews & Bro,414 Water st., N.Y improved Foot Lathes. Many a reader of this paper has one of them. Selling n all parts of the country, Canada, Europe, etc. Catalogue free. N. H. Baldwin, Laconia, N. H.

old Rolled-Shafting, piston rods, pump rods, Collins pat. double compression couplings, manufactured by Jones & Laughlins, Pittsburgh, Pa

Keuffel & Esser 116 Fulton st., N.Y., the best place to get 1st-class Drawing Materials, Swiss Instruments, and Rubber Triangles and Curves

E. P. Peacock, Manufacturer of Cutting Dies, Press Work Patent Articles in Metals, etc. 55 Franklin st., Chicago

Peck's Patent Drop Press. Milo Peck & Co., New Haven, Ct. For Solid Wrought-iron Beams, etc., see advertisement. Ad-

The Merriman Bolt Cutter-the best made. Send for circu-H. B. Brown & Co., Fair Haven, Conn.

Taft's Portable Hot Air, Vapor and Shower Bathing Apparatus Address Portable Bath Co., Sag Harbor, N. Y. (Send for Circula

Glynn's Anti-Incrustator for Steam Boilers-The only reliable preventive. No foaming, and does not attack metals of boilers. Price 25 cents per lb. C. D. Fredricks, 587 Broadway, New York.

For Fruit-Can Tools, Presses, Dies for all Metals, apply to Bliss & Williams, successor to May & Bliss, 118, 120, and 122 Plymouth st. , Brook lyn, N. Y. Bend for catalogue.

Presses, Dies, and Tinners' Tools. Conor & Mays, late Mays & Bliss, 4 to 5 Water st., opposite Fulton Ferry, Brooklyn, N. Y

3d hand Worthington, Woodward and Novelty Pumps, Engines 25 to 100 H. P., 30 Horse Luc. Boller. W. D. Andrews & Bro., 114 Water st., N. Y English and American Cotton Machinery and Yarns, Beam

Warps and Machine Tools. Thos. Pray, Jr., 57 Weybosset at., Providence, R.I.

To Ascertain where there will be a demand for new machinery or manufacturers' supplies read Boston Commercial Bulletin's Manufactur-ing News of the United States. Terms \$1 00 a year.

#### APPLICATIONS FOR EXTENSION OF PATENTS.

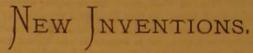
STEAM PRESSURE GAOK.—Clara A. Eastman, Boston, Mass., has petitioned for an extension of the above patent. Day of hearing, May 31, 1871.

HYDRANT.—George P. Perrini, Richmond, Va., and James E. Boyle, New York city, have petitioned for an extension of the above patent. Day of hearing, June 7, 1871.

PICKER SAWING MACHINE.—John Haw, Hanover County, Va., has peti-tioned for an extension of the above patent. Day of hearing, June 7, 1871.

Passgnggn Fare Boxes.—John B. Slawson, New York city, has petitioned for an extension of the above patent. Day of hearing, July 12, 1871.

SELF-ACTING RAKE FOR HARVESTERS.—Salem T. Lamb, New Albany, Ind. has petitioned for an extension of the above patent. Day of hearing, June


MACHINE FOR RIVERING BOILERS.—Silvester Bennett, Jefferson Parish La., has petitioned for an extension of the above patent. Day of hearing,

# New Patent Law of 1870.

### INSTRUCTIONS

HOW TO OBTAIN

# LETTERS-PATENT



Information about Caveats, Extensions, Interferences, Designs, Trade-Marks, and Foreign Patents.

OR Twenty-five years, MUNN & Co. have occupied the leading position of Solicitors of American and European Patenta. During this long experience they have examined not less than Fifty Thousand Inventions, and have prosecuted upwards of Thirty Thousand Applications for Patents. In addition to this they have made, at the Patent Office, Twenty-Five Thousand Special Examinations into the nevelty of various inventions.

The important advantage of Munn & Co.'s American and European Patent Agency is that the practice has been tended greater han that of any other agency in existence, with the additional advantages of having the aid of the highest professional skill in every department and a Branch Office at Washington, that watches and supervises cases when necessary, as they pass through Official Examination.

#### MUNN & CO.,

Ask Special Attention to their System of doing Business.

Consultation and Opinions Free.

Inventors who desire to consult with MUNN & Co. are invited to call at Mee 37 Park Row, or to send a sketch and description of the inventiwhich will be exemined and an opinion given or sent by mail without charge

#### A SPECIAL EXAMINATION

is made into the novelty of an invention by personal examination at the Patent Office of all patented inventions bearing on the particular class. This search is made by examiners of long experience, for which a fee of \$5 is charged. A report is given in writing.

To avoid all possible misapprehension, Munn & Co. advise generally, that inventors send models. But the Commissioner may at his discretion dispense with a model—this can be arranged beforehand.

Munn & Co, take special care in preparation of drawings and specifications. If a case should for any cause be rejected it is investigated immediately, and the rejection if an improper one set aside.

#### NO EXTRA CHARGE

is made to clients for this extra service. MUNN & Co, have skillful exports in attendance to supervise cases and to press them forward when necessary.

REJECTED CASES.

MUNN & Co. give very special attention to the examination and prosecution f rejected cases filed by inventors and other attorneys. In such cases a fee of \$5 is required for special examination and report; and in case of probable success by further prosecution and the papers are found tolerably well prepared, Munn & Co. will take up the case and endeavor to get it through for a reasonable fee to be agreed upon in advance of prosecution.

CAVEATS

Are desirable if an inventor is not fully prepared to apply for a Patent. A Caveat affords protection for one year against the issue of a patent to another for the same invention. Caveat papers should be carefully prepared. The Government fee on filing a Caveat is \$10, and Munn & Co.'s charge for preparing the necessary papers is usually from \$10 to \$12.

#### REISSUES.

A patent when discovered to be defective may be reissued by the surren-der of the original patent, and the filing of amended papers. This proceed-

DESIGNS, TRADE-MARKS, & COMPOSITIONS

ounds, and useful mixtures of all kinds.

When the invention consists of a medicine or compound, or a new article of manufacture, or a new composition, samples of the article muss se fur-lahed, neatly put up. There should also be forwarded a full statement of its

CANADIANS and all other foreigners can now obtain patents upon the same

#### EUROPEAN PATENTS.

MUNN & Co. have solicited a larger number of European Patents than any ther agency. They have agents located at London, Paris, Drussels, Berlin,

MUNN & Co. could refer, if necessary, to thousands of patentees who have had the benefit of their advice and assistance, to many of the principal business men in this and other cities, and to members of Congress and prominent citizens throughout the country.

All communications are treated as confidential.

MUNN & CO.,

No. 37 Park Row,

NEW YORK.

### Becent American and Loreign Latents.

Under this heading see shall publish weekly notes of some of the more prom-

COMBINED ORE CRUSHER AND AMALGAMATOR. -Lyman Griswold, Denver Colorado.—This invention relates to a new ore crusher, which is so constructed, by being provided with a set of inclined copper plates, that it will also serve as an amalgamator for the matter reduced on its dies. The invention consists in a new manner of securing and retaining the amalgamat ing copper plates; also in a novel set of elastic clamps for the same, and in a novel connection of casing and shute.

LEGISLATIVE TELLER AND RECORDER. -- Dr. Adam Weston, Keeseville, N Y.—This invention relates to a machine intended specially for use in legisla tive bodies, and which enables each member, by pulling one knob when he intends to vote, to display the number of his seat, either in the aye or nay column, in a conspicuous manner, on a plate elevated in full view from all parts of the hall; and also in a mechanism for conspicuously displaying the footing up of the whole number of ayes and noes, and in an apparatus for effecting the simultaneous printing of two separate and complete lists of

LIQUID MEASUREE .- Dr W. M. Wright, Chambersburg, Pa. - This inven tion consists mainly of two separate chambers, or two chambers combined in one, and of different capacities, the same being provided with a cock, so contrived, that, when turned in one direction, both chambers receive a sup ply of liquid at the same time, and when reversed, the supply passage is closed, and one or other of the chambers opened. The invention also consists in locating the mouths of the passage, whence the liquid escapes from the chambers, at the center of the bottoms thereof, in order that all the liquid may escape from the chambers, even when they stand inclined.

FILING AND SETTING MACHINE. -T. L. Shaw, Omaha, Nebrasks. -This in vention relates to a machine that accurately files, sets, and feeds a saw, and s provided with means for adapting itself to saws of any and all widths, and for giving the teeth a set of any required degree of inclination.

COMBINED SAD AND FLUTING IRON. -Frederick Myers, New York city .-This invention relates to improvements in combined sad irons and fluting irons, of that class in which two cast metal plates, consisting of a lower one and an upper one, are used, the lower one having a smooth sad iron face on and an upper one, are detected upper face, and the upper one being corrugated on the lower side, and both being provided with connecting devices, by which they may be connected together when the instrument is to be used as a sad iron, and discontinued when it is to be used for fluting. And the invention consists in the construction of the two plates with convex fluted. surfaces, for acting on the goods by a rolling motion, and the employment in connection therewith, of connecting apparatus, which will admit of such rolling or oscillating motion, and at the same time be capable of holding them firmly together when the instrument is used as a sad iron

DAMPER.-L. S. Taylor, Sigel, Mo.-This invention relates to improve ments in dampers for stove-pipes and other flues, and it consists in a tub arranged transversely through the pipe or flue, open at both ends, an having slots opening into the pipe or flue, in which tube is placed an other, having corresponding slots, and arranged for rotating for bringing its openings into coincidence with those in the first-mentioned tube, or to close

-This invention relates to improvements in the manufacture of the metallic cups for picture nail heads, and consists in shaping the said cups in hand or power drawing presses, by a drawing process, whereby the inventor is enabled to accomplish the work by fewer operations and annealings than is required by the common mode.

COMPOSITION FOR STAINING WOOD .- John Winger, Kansas City, Mo .-This invention relates to a new and useful improvement in a composition for for staining wood of the color of black walnut.

SYSTEM OF BALANCING VERTICAL RECIPROCATING MASSES.-William F. Durfee, Bridgeport, Conn. - This invention relates to a new and improved mode of balancing the weight of vertical reciprocating masses of matter, is order that the power applied to give such masses their vertical reciproc movement may be no greater in their upward than in their downward di

WINE BASKET. -J. Roussillon, Epernay, France, -This invention related to a new and useful improvement in willow baskets for holding and transporting bottles of wine and other articles, more especially intended as

WIRE SCREEN.—Samuel Holdsworth, Maspeth, N. Y.—This invention relates to a new and useful improvement in wire screens for masons' use in screening sand, and also for screening grain and coal,

WINDOW CURTAIN FIXTURE. - Thomas C. Williams, East Randolph, Wis -This invention relates to a new and useful improvement in mode of operating window shades or curtains of textile material or paper.

PLATEN FRED GUIDES .- Edward L. Megill, Brooklyd, N. Y.-This inven riarray rate of the object to furnish an improved feed guide, for platen printing presses, which is designed to take the place of the inconvenient contrivances, such as common plus, quads, reglets, cardboards, etc., generally employed upon such presses by printers for the purpose of registering sheets of paper or other material.

Sawing Machine.-Jacob Felton, Fairmount, Ind.-This invention reates to a new drag saw, which is constructed with the object of avoiding excessive friction during the operation of sawing, and for permitting a read;

GREEN GLAZE FOR FLOWER POTS .- John E. Brooks, Yarmouth, Me .- This invention has for its object to furnish an improved green glaze for flowe pots, which shall be so inexpensive as to stapt it for use upon common earthenware, while at the same time giving to the ware a beautiful fluish.

LUBRICATOR FOR STEAM CYLINDERS.—Tapping Reeves, Little River, Cal.—This invention has for its object to furnish an improved lubricator for steam cylinders, which shall be so constructed that it may be supplied with oil when the cylinder is under steam pressure, and which will enable the water of condensation to be readily blown off when it is necessary to replenish the reservo'r with oil.

ANIMAL TRAP. - James D. Pell, New York city. - This invention has for its object to improve the construction of the ordinary wooden animal traps, so as to make them more convenient in use, and more effective in operation.

MACHINE POR COILING DOUBLE BED SPRINGS .- Matthew Van Vice Albany, N. Y.-This invention consists in the application of single or double winding cones, to two separate slides, the cones revolving in opposite direc tions to produce the right and left cones or coils of a double bed spring from

NAIL MACHINE. -- Henry Reese, Baltimore, Md. -- In our notice of this in vention, in the issue of the 11th inst., we stated that the operation of the machine produces a "headless pail;" and that "the head of the nail is formed by a subsequent operation." This is not true. The nail is finished and cut from the rod by one operation.

BLIND WIRING MACHINE.-Elijah F. Dunaway, Cincinnati, Ohio. invention relates to a new machine for wiring blind slats and rods, and has for its object to make the apparatus entirely adjustable for applying staples of suitable length to articles of various thicknesses.

HAY FORK.—Benjamin F. Brown, Catlin, Ind.—This invention relates to improvements in hay forks, and consists in a pair of bars, barbed at one end d pivoted together so that the bars being closed against each other, the and priviled together said barbed ends constitute one point which may be readily forced into the bay, after which they may be separated to hold it for elevating, in which position they are hold by a pair of bars and a trip catch, one of which bars as connected to the lifting bars where they are pivoted, and the other to a part of toggle-pointed bars, pivoted to the said lifting bars, and this latter slides on the other as the lifting bars open and close, mid is held in one position, to keep them open, by the trip catch.

MACHINES FOR WEAVING EMBROIDERY. - Joseph Clough and Joseph Crompton, Chicopee, Mass.—This invention relates to improvements in machines for weaving embroidery, and it consists in an improved arrange ment of adjustable corners and connecting rods with the needle bars and a a pattern wheel or former, having for its object the weaving of three listinct patterns simultaneously. It also consists in an arrangement of the driving gear for working the pattern wheel calculated to facilitate the set-ting of the pattern wheel back, or adjusting it with exactness to make the exact adjustments of the needles with the patterns, often required in case of

#### Inventions Patented in England by Americans.

[Compiled from the Commissioners of Patents' Journal.]

APPLICATIONS FOR LETTERS PATENT.

533.—IMPROVED SAND, GLASS, OR EMERY PAPER OR CLOTH.—G. C. Taft, Worcester Mass., and J. H. Armbruster, Philadelphia, Pa. Feb. 28, 1871. 549.—APPARATUS FOR REGULATING PRESSURE OF STEAM IN DRYING CYL-INDERS. ETC.—Bensiah Fitts, Worcester, Mass. March 1, 1871.

575.—SUGAR MANUFACTURING APPARATUS.—Claus Spreckles, San Francis o, Cal. March 3, 1871.

578.—FLEXIBLE SHAFTING AND OTHER APPARATUS FOR TRANSMITTING POWER.—J. B. Morrison, St. Louis, Mo. March 3, 1871.

587.—LAMPWICKS.—H. O. Whippie, New York city. March 4, 1871. 590.—MEASUREMENT OF FOLDED OR ROLLED FABRICS.—Edward Morgan, Washington, D. C. March 4, 1871.

596.—Gaseliers, Sliding Gas Pendants, and Sliding Gas Brackets.— John Horton, 620 Broadway, New York city, now residing at 113 Hagle; Boad, Edgbaston, near Birmingham, England.

600.—Type-distributing Machinert.—D. B. Thompson, Brooklyn, N. Y. March 6, 1871.

602.—COMBUNED SAFETY VALVE AND WHISTLE.—G. H. Clemens, Chicago, Ill. March 6, 1871.

### Official List of Patents.

#### ISSUED BY THE U. S. PATENT OFFICE.

FOR THE WEEK ENDING MARCH 21, 1871.

| 3 | SCHEDULE OF PATENT FEES On each Caveat                                                                                                            |       |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 3 | On each Caveat                                                                                                                                    | . 216 |
| ч | On each trade-mark                                                                                                                                | . 2.4 |
| 8 |                                                                                                                                                   |       |
|   | On Issuing each original Patent                                                                                                                   | .82   |
| 3 | On appear to Examiners in Chief                                                                                                                   | 1000  |
|   | On appeal to Commissioner of Patents                                                                                                              | .\$2  |
| 2 | On application for Reissue                                                                                                                        | . \$3 |
|   | On application for Extension of Patent.                                                                                                           |       |
| 騔 | On granting the Extension On filing a Disclaimer On an application for Design (three and a half years)                                            | - 80  |
| а | On ning a Disclaimer                                                                                                                              | - 21  |
|   | On an application for Design (three and a half years). On an application for Design (seven years). On an application for Design (fourteen years). | -     |
|   | On an application for Design (seven years)                                                                                                        | 124   |
|   |                                                                                                                                                   |       |
| 8 | For Copy of Claim of any Patent issued within 30 years.                                                                                           | 200   |
| я | For Copy of Claim of any Patent issued within 30 years                                                                                            | 133   |

as the Claim covers, from S1

as the Claim covers, from S1

upward, but usually at the price above-named.

2h full Specification of any patent issued since Nov. 20, 1866 at which time the Patent Office commenced printing them. S1\*25

Official Copies of Practicings of any patent issued since 1836, tee can supply at a reasonable cost, the price depending upon the amount of labor involved and the number of views.

Full information, as to me.

as to price of drawings, in each case, may be had by

## Patent Solicitors. 37 Park Row, New York.

112,764.—Composition for Pavements.—Nathan S. Abbott, 112,765 .- BED BOTTOM .- John H. Allyn, Whitesborough,

112,766-Pressing and Baling Hay.-George H. Aylworth,

Brighton, III. 112,767.—HAT AND CAP HOLDER.—Charles Beeny, Albany,

112,768.—PUMP PISTON.—Daniel W. Bell, St. Louis, Mo. 112,769.—Horseshoe Machine.—Uriah Billings, Cambridge-

port, Mass. 112,770.—PISTON-ROD PACKING.—James H. Blessing (assignor

to himself and Frederick Townsend), Albany, N. Y.
112,771.—TAP AND NOZZLE FOR OIL CANS.—J. A. Bostwick,
New York city.
112,772.—GLASS-BLOWER'S MOLD.—Samuel R. Bowie (assignor to himself and William L. Libbey & Brother), New Bedford,
Mass.

Mass.

112,773.—HORSESHOE.—Joseph Brackett, Lynn, Mass.

112,774.—STREET LAMP.—George Brandon, New York city.

112,775.—MACHINE FOR UPSETTING BOLTS.—Benjamin Briscoe and Joseph A. Briscoe (asilgnors to the Michigan Bolt and Nut Company), Detroit, Mich.

112,776.—GREEN GLAZE FOR PLOWER POTS.—John E. Brooks, Yarmouth, Me.

112,777.—HORSE HAY FORE.—Benjamin F. Brown, Catlin, Ind.

ind.
112,778.—DEVICE FOR TRANSPORTING EGGS.—A, H. Bryant, Chicago, Ill. Antedated March 9, 1871.
112,779.—PERMATIC TELEGRAPH.—Edward A. Calahan, Brooklyn, and George B. Field, New York etty.
112,780.—Combined Gage and Try Square.—Frederic Castle (assignor to himself and Newbury J. Eaton), Montana, Iowa. Antedated March 18, 1871.
112,781.—PEN HOLDER.—Bemjamin Charles, Akron, Ohio.
112,782.—Thrashing Macetine.—Francis G. Chesman, Lemont Ill.

mont, III.

112,783.—THILL COUPLING,—Newton J. Clark (assignor to himself and Mitton H. Clark). Clarkston, Mich.

112,784.—Egg AND FRUIT CARRIER.—Wm. J. Clark, Lena,

112,785,—LAPPET LOOM.—Joseph Clough and Joseph Cromp

112,765.—LATTET LOOM.—Joseph Clough and Joseph Crompton, Chicopee, Mass.
112,786.—COATING GAS AND WATER-PIPE.—Nicholas Clute, Schencetady, N. Y.
112,787.—BLOTTING PAD.—Alfred Q. Collins, Cambridge, Mass.

112,788.—Sawing Machine Table.—Jonathan Creager, Cin 112,789.—FIRE SHOVEL.—Isaac W. Denning, Allegheny City

112,790.—WASHING MACHINE.—William James Dodge, Syracuse, N. Y., assignor to bimself, Alanson T. Briggs, and Wm. H. Thrall, New York city.
112,791.—BLIND WIRING MACHINE.—Elijah F. Dunaway,

112,792.—BALANCING VERTICAL-RECIPROCATING MASSES

112,792.—BALANCING VERTECAL-RECIPROCATING MASSES.—
Win. F. Durfee, Bridgeport, Coan., assignor to humself and Jackson & Wiley, Detroit, Mich.

112,793.—ADJUSTABLE BEVIEL.—Willard C. Ellis (assignor of one half his right to Rufus A. Rassell), Springdeld, Mass.

112,794.—SAWING MACHINE.—Jacob Felton, Fairmount, Ind.

112,795.—MAGAZINE FIREATIM.—Harbert K. Forbis, Danville, Ky. Antedated March 10, 1871.

112,796.—CHURN.—David Frankfoder, Wakarusa, Ind.

112,797.—Horse-Collar Pad.—John Fraser (assignor to himself and John J. Hardy), Dowa giac, Mich.

112,798.— Telegraph Switch.—Alexander H. Freeman, Chicago, Ill.

Chicago, III. 112,799.—Bit Brace.—Raymond French, Seymour, Conn. 112,800.—Loop for Stirrups.—J. B. Gathright, Louisville.

112.801 .- Vise for Joiner's Use .- Jonathan Good, Lancaster,

112,809,-Machine for Sewing Boots and Shoes,-Chas

Goodyear, Jr., New Rochelle, N. Y.
112,803.—Breech-Loading Firearms.—G. B. Gray and J.
H. Romans, Mount Vernon, Ohio.
112,804.—Combined Ore Crusher and Amalgamator.—
Lyman Griswoll, Denyer, Colorado Territory. Lyman Griswold, Denver, Colorado Territory, 112,805.—RAILWAY-RAIL CHAIR,-Samuel M. Guest, Ypsilanti,

113,806,—Churn.—H. S. Gurney and Horace Merrill, Memphis,

112,807.-MOUSE AND ANIMAL TRAP.-George L. Hart, New

Britain, Conn.
112,808.—APPARATUS FOR CUTTING THE ENDS OF CIGARS.—
Mathias Joseph Hinden (assignor to Adolph Freund), Detroit, Mich. Mathias Joseph Hinden (assignor to Adolph Freund), Detroit, Mich. 112,809.— SAND SCREEN.— Samuel Holdsworth, Maspeth,

112,810,-Cord-Guide for Sewing Machines,-Henry Horn

(assignor to John O. Fairbairn), Milwaukee, wis.
112,811.—THILL COUPLING.—Benjamin F. Horton, Ithaca 112,812 .- SASH HOLDER. - Philo B. Hovey, New London

112,813.—BEE HIVE.—Washington J. Kelly, Commerce, Mich 112,814.—CURTAIN FIXTURES.—Wm. C. Kennedy, Commerce

112,815.—CLOTHES WRINGER.—Alexander King, Philadel

phis, Pa.

112,816.—DRAWER PULL.—Joseph Kintz (assignor to himself and P. J. Clark), West Meriden, Conn.

112,817.—SHAFT COUPLING.—Darius Knickerbocker and Samuel Knickerbocker, Allegan, Mich.

112,818.—RECTIFYING HIGH WINES.—Archibald K. Lee, Galveston, Texas.

111,819.—PHYSICIAN'S SADDLE-BAG.—A. M. Leslie, St. Louis, Mo.

112,820.—Washboard.—Charles Letterman, Syracuse, N. Y.,

assignor to John W. Throop. 112,821.— PLANING MACHINE.— Charles Levey, Toronto,

Canada. 112,822.—Cotton Press.—Eli W. Long and Isaac N. Patten,

Memphis, Tenn.

112,823.—TOY PUZZLE.—Samuel Loyd, New York city.

112,824.—Boller for Heating Purposes.—J. A. Maynard, Newtonville, Mass.

112,825.—Hydrant.— John McCann, Albany, N. Y. Antedated March 2, 1871.

112,826.—Rallway Shifting Truck.—P. H. McWilliams, Detroit, Mich.

Detroit, Mich. 112,827.—PLATEN FEED GUIDE.—Edward L. Megill, Brooklyn

112,828.—MANUFACTURE OF IRON AND STEEL.—John W. Middleton, Philadelphia, Pa. 112,829.—CRANE.—John W. Middleton, Philadelphia, Pa. 112,830.—Peat Machine.—Herman Mielisch, Racine, Wis.

112,830.—Peat Machine.—Herman Mielisch, Hacine, Wis.
112,831.—Apparatus for Refining Metals.—Adolph Millochan, New York city.
112,832.—Apparatus for Removing Paint, Varnish, etc.—Theodore F. Moody, Toledo, Ohio. Antedated March 14, 1811.
112,833.—Sash Holdder.—James B. Morgan, Davenport, Iowa assignor to himself and Maurice J. Keating, Rock Island, Ill.
112,834.—Wagon Seat.—Valentine Myers (assignor to himself and John M. Phelps), Cogan Station, Pa.
112,835.—ROAD SCRAPER.—William T. Nichols, Chicago, Ill.
113,836.—The Expansis Apparatus —Henry C. Nicholson, Mt. 112,836.—Telegraph Apparatus.—Henry C. Nicholson, Mt

Washington, Onio. 112,837.—SWEEPING MACHINE.—George S. Norris, Baltimore,

112,838,-Machine for Grinding Saw Teeth.-John L.

Otis, Leeds, Mass.

112,839.—PREPARING TIN SALTS FROM TINNERS' WASTE.—
Adolph Ott (assignor to New York Metal and Chemical Manufacturing
Company), New York City.

112,840.—SHUTTER FASTENER.—Charles Pabst, Wilmington

Del.

112,841.—ELECTRO-MAGNETIC MOTOR.—Henry M. Paine, New ark, N.J., assignor to Mahlon S. Frost, New York city.

112,842.—BIT AND DRILL BRACE.—George G. Parker, and William P. Dodge, Prospect, New York.

112,843.—GATE.—Noah Parker, Thimble County, Ky.

112,844.—ANIMAL TRAP.—James D. Pell, New York city.

112,845.—PREPARING SEED CORN.—John Meek Petit, Monroe Township, Ohio.

Edward R. Pholos and James P. Mc.

112,845.—PREPARING SEED CORN.—John Meck Petit, Monroe Township, Ohio.
112,846.—BROILER.—Edward B. Phelps and James P. Mc-Lean, Brooklya, N. T.
112,847.—LUBRICATOR.—Tapping Reeves, Little River, Cal.
112,848.—MANUFACTURE OF NITRO-GLYCERIN.—Edward A. L. Roberts, Titusville, Pa.
112,849.—MANUFACTURE OF NITRO-GLYCERIN.—Edward A. L. Roberts, Titusville, Pa.
112,850.—ELECTRIC AND OTHER FUSE HEADS,—Edward A. L. Roberts, Titusville, Pa.
112,851.—"CHAFE IRONS" FOR WHEELED VEHICLES.—Edward P. Roche, Bath, Me.
112,852.—WINE BASKET.—Jean Roussillon, Epernay, France.
112,853.—STEAM ENGINE.—Stephen P. Ruggles, Boston, Mass.

Mass.
112,854.—HORSE HAY RAKE.—John H. Schoonmaker, Bethle-hem, assignor to himself and Alexander Selkirk, Albany, N.Y. Antedated March 10, 1871.
112,855.—HOISTING MACHINE.—John Scott, Pontiac, Mich. 112,856.—HOISTING MACHINE.—William Sellers, Philadel-

March 10, 1871.

112,855.—Hoisting Machine.—John Scott, Pontiac, Mich.

112,856.—Hoisting Machine.—William Sellers, Philadelphia, Pa.

112,857.—Buckle for Suspenders.—Abraham Shenfield, New York city.

112,858.—Compound for Treating Catarrh, etc., by Inhalation.—Dana Siade, Chicago, Ill.

112,859.—Electric Fuse.—Henry Julius Smith, Boston, Mass. Antedated March 7, 1871.

112,860.—Hand Tool for Carving and Engraving.—Geo. B. Soley, Philadelphia, Pa.

112,861.—Gage for Saw Tables.—Franklin L. Sprague, Keene, N. H., assignor to William H. Doane, Chichmatl, Ohio.

112,862.—Cultivator.—William D. Stroud, Oshkosh, Wis.

112,863.—Damper.—Leonard S. Taylor, Sigel, Mo.

112,864.—Stump Extractor.—Albert D. Tilyon, Norwich assignor to Cornelius A. Church, New Berlin, N.Y.

112,865.—Brake for Rallway Cars.—Lewis W. Tracy (assignor to himself and James E. Granniss), New York city.

112,866.—Wheer.—Eben Trasy, Vermontville, Mich.

112,867.—Roll for the Manufacture of Planters' Hoes.—John T. Tyler, Pittsburgh, Po.

112,868.—Machine for Colling Bed Springs.—Matthew Van Vleck, Albany, N. Y.

112,869.—Compound Potato Planter and Digger.—James Carrell Walker, Farmington, Mich.

112,871.—Hand Stamp.—John Walters, Norfolk, Va., assignor to William O. Hickok, Harrisburg, Pa.

112,872.—Vegetable Grater.—Jacob Wehrle and William Wittlinger, Cincinnati, Ohlo.

112,873.—Machine for Grinding Carriage Springs.—Hebron Mayhew Wentwith, Gardiner, Mo.

112,875.—Barren.—Henderson Willard, Grand Rapids, Mich.

112,876.—Window Curtain Fixture.—Thomas Charles Williams, East Randolph, Wis.

112,879.—Composition for Staining Wood,—John Winger, Kansas City, Mo.

112,879.—Composition for Staining Wood,—John Winger,

Kansas City, Mo.

112,880.—MECHANISM FOR MANUFACTURING HEADS FOR PICTURE NAILS—Leopold Wolf (assignor to the Meriden Malleable Iron Company), Meriden, Conn.

112,881.—STEAM HEATER.—Charles J. Wood, Baltimore, Md.

112,881.—STEAM HEATER.—Charles J. Wood, Baltimore, Md.
112,882.—RUFFLING ATTACHMENT FOR SEWING MACHINES.—
Frederick B. Zay, Findlay, Ohlo.
112,883.—SAW MILL.—Emanuel Andrews, Williamsport, Pa.
Anteclated March 10, 1871.
112,884.—CLOTHES WRINGER.—Alfred M. Bailey (assignor to
"The Metropolitan Washing Machine Company), Middlefield, Conn.
112,885.—ROCK DRILL—Albert Ball (assignor to Sullivan Machine Company), Claremont, N. H.
113,886.—SASH HOLDER.—William Thomas Bausmith, Aberdeen, Md.

112,887.—IRON RAILING.—Samuel S. Bent, Port Chester, N.Y 112,888.—CLEVIS HOOK FOR DOUBLE TREES.—Warren W Bentley, Lee Township, Mich.

112,889.—ATTACHMENT FOR HARNESS.—William A. Blundell, St. Louis, Mo., assignor to himself, William P. Nelson and Mathew C. Tully.

112.891.—WHIP STOCK.—John J. Bohler, Westfield, Mass. 112.892.—MOWING MACHINE.—Aaron Bolander, Akron, Ohio. 112.893.—PORTABLE RAILWAY.—Theodore Bootsman, Tomp-

112,894.—Corn Planter.—Richard A. Boulware, Doniphan, 112,895,-DEVICE FOR OPENING OYSTERS,-Michael C. Boyer,

112,896,—APPARATUS FOR TEMPERING SAND.—John C. Broad-

meadow, Bridgeport, Conn.

112.897.—RAILWAY CAR TRUCK.—Chauncey S. Buck (assignor to himself and James Lovett), St. Louis, Mo.

12.898.—ROOFING BRACKET.—Jonathan W. Cadwell, Springfield, Mass.

112.899.—Valye Gear for Steam Engine.—A. S. Cameron, New York city.

112.900.—STILL.—James A. Campbell, Dayton, Va., assignor to himself, A. K. Layman, and L. W. Myers.

112.901.—Thread Guide for Winding Machines.—D. M. Church, Holyoke, Mass.

Mass. 112,903.—Door Bell,—John P. Connell, Kensington, Conn. 112,904.—Gate.—Peter S. Crawford, Union, Ill. 112,905.—Carriage Gearing.—Cornelius Custer, Norristown,

Ps.
112,006,—HARNESS ROSETTE,—W. D. Davis, C. W. Blakeslee, and J. C. Peck, Watertown, Comb.
112,907.—CALL BELL,—H. A. Dierkes and John Fretts, New York city; John Fretts assigns his right to H. A. Dierkes.
112,908.—CIRCULAR SAW BENCH.—B. F. Dunklee, Concord,

112,909.—ADJUSTABLE MILL FEED.—Wm. T. Davall, Wash

ington, D. C.

112,910.—Locked Cock.—Henry Essex, Meadeville, Pa.

112,911.—Sand Screen.—G. W. Fair, Dayton, Ohio.

112,912.—Bed Bottom.—Matthew Falcon, Bloomington, Ill.

112,913.—Plow.—L. F. Frazee, Jersey City, N. J.

112,914.—Tween for Blast Furnaces.—John Fry, Salisbar, Comp.

112,921,-FAN AND FLY DRIVER,-Frank M. Hunt, Clinton,

Ga.
112,922.—CATTLE TIE.—Seth T. Hutchins, North Anson, Me.
112,924.—ROLLING MILL.—Asa Johnson, Brooklyn, N. Y., assignor to himself and W. H. Johnson, New York city.
112,925.—HOLLOW TILE WALL.—G. H. Johnson, New York

112.026.—Hollow Tile Floor.—G. H. Johnson and Bal-

thasar Kreischer, New York city.

112,927.—RESERVOIR FOR GRAIN AND OTHER MATERIALS.—
G. H. Johnson and Balthasar Kreischer, New York city.

112,928.—Fire Escape.—C. P. Kenyon (assignor to himself

and J. W. Sharp), Selma, N. C. 112,929.—COMPOSITION THE FOR FIRE-PROOFING BUILDINGS.—Bulthasar Kreischer, New York city. 112,930.—HOLLOW THE,—Bulthasar Kreischer, New York

city.
112,931.—Stovepipe Shelf and Clothes Drier.—Geo. W. Langdon (assignor to himself and Lewis Seneare), Greene, N.Y.
112,952.—Belli Hanging.—A. L. Sas Slyhens, near Ostend,

112,933.—LEGGOTYPING.—W. A. Leggo, Montreal, Canada. 112,934.—HINGE.—M. R. Lemman, Hamilton, Ohio. 112,935.—Wood Screw.—Andrew B. Lipsey, West Hoboken.

112,936.—Base-Burning Stove.—Lyman Litchfield, Gouverneur, N.Y., assignor to himself and H. K. Osborne, Arlington, Mass. 112,937.—Traveling Trunk.—John C. Locke, Rochester,

112,338.—Chain for Hanging Sash,—Michael McGrath, New York citr.

112,890.—ADVERTISING LAMP.—Emil Boesch, San Francisco, 112,030.—BOAT-LOWERING APPARATUS.—George W. Mallory, 112.940.-HARVESTER RAKE.-John P. Manny, Rockford,

> 112,911.-HARVESTER RAKE,-John P. Manny, Rockford, 112,042.—Harvester.—John P. Manny, Rockford, III. 112,943.—Saw with Detachable Teeth.—T. P. Marshall,

ton, N. J.

—APPARATUS FOR MANUPACTURING WIRE.—B. A.

on (assignor to T. L. Carpenter), New York city.

on (Assignor to T. L. Carpenter), New York city.

on (Assignor to T. L. Carpenter), New York city.

on (Assignor to T. L. Carpenter), New York city.

on (Assignor to T. L. Carpenter), New York city.

on (Assignor to the New England Butt Company), Providence,

isomerican in the Carpenter to the New England Butt Company), Providence,

12,947.-BUCKLE.-Duncan McMillan and Abram Rowan,

112.939.—Valve Gear for Steam Engine.—A. S. Cameron,
Sew York city.

112.000.—Strill.—James A. Campbell, Dayton, Va., assignor
to Emestif, A. K. Layman, and L. W. Myers.

112.901.—Thread Guide for Winding Machines.—D. M.
Carch, Holyoke, Mass.

112.002.—Shoemakers' Hammer.—Arthur Clarke, Boston,
Mass.

113.004.—Billish, Morris, Canton, Ohio.
113.005.—Keep and Brace for Fifth Wheels.—Francis
in Morse (assignor to H. D. Smith & Co.), Plantsville, Cons.
113.005.—Pencil Sharpener.—Elias P. Needham, New

York etty. 112,652.—ANKLE BRACE.—Jacob S. Niswander, Oakland.

Cal.
112,958.—PIE CASE.—H. H. Olds, New Haven, Conn.
112,954.—CAR BRAKE AND STARTER.—Joseph Caradis (assignor to himself and Sarah Parker), Brooklyn, N. Y.
112,955.—LIFTER FOR FRUIT JAR.—S. R. Pinckney, New

GATE FOR TURBINE WATER WHEEL,-Samuel A.

112,957.—APPARATUS FOR ESTABLISHING ELECTRICAL COM-MUNICATION IS RAILMOAD TRAISS.—P. D. Prud'homme, Paris, France, assignor to Charles De Frondat and Affred Michant, Roston, Mass. 112,058.—Pipe Coupling.—J. B. Ramp, Cuyagoga Falls,

112,959,-PRESSED FRUIT LIFTER,-Ennis A. Raymond, Wat-112,000.—Broom.—C. L. Reid, Louisville, Ky. 112,061.—Portable: Furnace.—Jesse Reynolds, Philadel-

burr. Coan.

112.915.—Center Point Trimming.—Ansel Hecht, New York city.
112.915.—Center Point Trimming.—Center (assignor of one half his right to P. J. Marsh), Lansingburgh, N. Y.
112.918.—Ore Separator.—W. S. Hicks, New York city.
1.2.918.—Ore Separator.—Wm. Hooper, Ticonderoga, N.Y.
Antedated March 16, 1876.
112.930.—Medical Compound or Salve.—Martha Huddlesston, Jackson, Tenn.
112.931.—Fan and Frank Furnace.—Jesse Reynolds, Philadelphia, Pa.
112.962.—Reversible Boot HeelCo y, Providence, Br. I.
112.963.—Fruit Drier and Food Warmer.—Seelye Richardson and Prancis Hacker (assignors to Reversible Boot HeelCo y, Providence, Br. I.
112.963.—Fruit Drier and Food Warmer.—Seelye Richardson and Prancis Hacker (assignors to Reversible Boot HeelCo y, Providence, Br. I.
112.963.—Fruit Drier and Food Warmer.—Seelye Richardson and Prancis Hacker (assignors to Reversible Boot HeelCo y, Providence, Br. I.
112.963.—Fruit Drier and Food Warmer.—Seelye Richardson and Prancis Hacker (assignors to Reversible Boot HeelCo y, Providence, Br. I.
112.963.—Fruit Drier and Food Warmer.—Seelye Richardson and Prancis Hacker (assignors to Reversible Boot HeelCo y, Providence, Br. I.
112.963.—Fruit Drier and Food Warmer.—Seelye Richardson and Prancis Hacker (assignors to Reversible Boot HeelCo y, Providence, Br. I.
112.963.—Fruit Drier and Food Warmer.—Seelye Richardson and Prancis Hacker (assignors to Reversible Boot HeelCo y, Providence, Br. I.
112.963.—Fruit Drier and Food Warmer.—Seelye Richardson and Prancis Hacker (assignors to Reversible Boot HeelCo y, Providence, Br. I.
112.963.—Fruit Drier and Food Warmer.—Seelye Richardson and Prancis Hacker (assignors to Reversible Boot HeelCo y, Providence, Br. I.
112.963.—Fruit Drier and Food Warmer.—Seelye Richardson and Prancis Hacker (assignors to Reversible Boot HeelCo y, Providence, Br. I.
112.963.—Fruit Drier and Fruit Hacker (assignors to Reversible Boot HeelCo y, Providence, Br. I.
112.965.—Fruit Drier and Fruit Hacker (assignors to Reversible Boot HeelCo y, Providence, Br. I.
112.965.

eace, Ind. 112,967.—MACHINE FOR HUSKING CORN.—Jacob Russell, 112,968.-End Gate for Wagons.-J. F. Sener, Lancaster, 112,969 .- Hydraulic Nozzle .- Henry Shaw, Nevada City,

112,970.—Saw-set and Filer.—T. L. Shaw, Omaha, Neb. 112,971.-TURNING LATHE.-S. D. Sheldon, Fitchburg, 112.972.—SHAFT COUPLING.—James Sherry, Watertown, 112,973 .- MANUFACTURE OF EYELET STOCK .- S. N. Smith,

Providence, R. I.

112,974.—HOLDER FOR DRINKING GLASSES.—J. V. Snider,
Pulladelphia, Pa.

112,975.—GAS MACHINE.—T. G. Springer, St. Louis, Mo.
Antedated March 10, 1871.

112,976,-WHISK BROOM.-Greenleaf Stackpole, Elizabeth, 112,977.—Cheese Hoop.—William Sternberg, Bridgeport, 112,978.—HINGE FOR SEWING MACHINES.—R. H. St. John,

Bellefoutaine, Ohlo.
112,979.—Saw Gummer.—N. F. Stone, deceased (Amanda Stone and Benjamin Holbrook, administrators), Chicago, Ill. Antedated

Stone and Benjamin Holbrook, administrators), Chicago, Ill. Antedated March 14, 1871.

112,980.—Needle for Sewing Machines.—Edwin Strain, Newton, Mass.

112,981.—Hydrocarbon Gas Apparatus.—M. H. Strong and W. I. Reld, Brooklyn, N. Y.

112,982.—Fire Escape.—T. L. Summeril, Juda, Wis.

112,983.—Soar Disn.—J. M. Thatcher, Bergen, N. J. 112,984.—Book Supront.—S. M. Thompson, Providence

112,985.—Sasii Holder.—Alexander Thomson, Champaign,

1112,986,—FIRE-PLACE GRATE,—J. W. Thorniley, New Brighton, Pa.
112,987.—ALARM LOCK,—J. H. Thorp, New York city,
112,988.—ELASTIC ROLL.—W. H. Towers, Boston, Mass.
112,989.—THILL COUPLING.—Charles Twombly, Boston,

112,989.—THILL COUPLING.—Charles Twombly, Boston, Mass.
112,990.—WALKING CULTIVATOR.—John Vanluvanee and High Smith, Moline, III.
112,991.—APPARATUS FOR CONVERTING RECIPROCATING INTO ROTARY MOTION.—FRANK Wagner, New York city.
112,992.—METER.—Franz Wagner, New York city.
112,993.—COOKING STOVE.—G. W. Walker, Boston, Mass.
112,994.—CULTIVATOR.—F. N. Welden, Rockford, III.
112,995.—FUEL AND KINDLING WOOD.—W. E. Wertenbaker, Washington, D. C.
112,996.—ZINC BOARD FOR STOVES.—William Westlake, Chicago, III.
112,997.—Breech Loading Fire-Arm.—Eli Whitney, New Haven, Comm.

Haven, Conn. 12,998,—RAILWAY RAIL AND CHAIR.—W. E. Winby, Edg-112.905.—RATIWAT BAN baston, England.
112.909.—SHIP'S COMPASS.—G. W. Wood (assignor to M. A. Wood), Brooklyn, N. Y.
113.000.—TYING BROOMS AND BRUSHES.—J. H. Anderson, Terre Hante, Ind., assignor to Thomas Marston, Jr., W. L. Peck, and C. I. Peck, Chicago, Ill. Antedated Feb. 14, 1871.

#### REISSUES.

4,305.—SEWING MACHINE.—C. O. Crosby, New Haven, as signor to N. A. Baldwin, Milford, Conn.—Patent No. 11,725, dated Octo-ber 12, 1898. her 12, 1858.
4,306.—COPYINO PRESS.—E. W. Frost, New York city, assignee of Francis floyey.—Patent No. 42,141, dated March 29, 1864.
4,307.—SEED DRILL.—F. H. Manny, Rockford, Ill., assignee of M. C. Younglove.—Patent No. 20,602, dated June 15, 1858.

#### DESIGNS.

DESIGNS.

4,721.—CARPET PATTERN.—Jonathan Crabtree (assignor to Leedom, Shaw & Stewart), Philadelphia, Pa.

4,722.—ORNAMENTAL CHAIN LINK.—Virgil Draper (assignor to O. M. Draper), Attleborough, Mass.

4,723.—CHAIN LINK.—Virgil Draper (assignor to O. M. Draper), Attleborough, Mass.

4,724.—SHOW CASE.—W. H. Grove, Philadelphia, Pa.

4,725.—SIDE FRAME OF SCHOOL DESKS.—A. F. Old (assignor to J. A. Bancroft & Co.), Philadelphia, Pa.

4,726 and 4,727.—Type.—W. H. Page (assignor to W. H. Page & Co.), Norwich, Conn. Two patents.

4,728.—Type Border.—W. H. Page (assignor to W. H. Page & Co.), Norwich, Conn.

4,729.—WHISK BROOM.—Greenleaf Stackpole, Elizabeth, N. J.

4,730.—SWORD.—E. S. Warren, Springfield, Mass. 4,731.—HANDLE FOR SPOONS OR FORKS.—George Wilkinson (assignor to Gorham Manufacturing Co.), Providence, R. I.

#### TRADE-MARKS.

197.—Plumbago Grease.—American Graphite Co., New

York etty.

198.—Pump.—C. G. Blatchley, Philadelphia, Pa.

199.—Woolen Goods.—W. P. Gibbs, R. G. Ross, I. N. Field, and W. B. Field, St. Charles City, Mo.

200.—Weighing Scale.—E. F. Jones, Binghampton, N. Y.

201.—Whiskey.—Mills, Johnson & Co., Cincinnati, Ohio.

202.—Shirt.—Morison, Son & Hutchinson, New York city.

203.—Tobacco.—E. J. Oppelt, Baltimore, Md,

204.—Burning Fluid.—R. G. Richards, New York city.

205.—Slates, etc.—The Silicate Slate Co., N. Y.

206.—Wine.—M. Werk & Sons, Cincinnati, Ohio.

#### EXTENSIONS.

WATER WHEEL.—Samuel Reynolds, of Ellisburg, N.Y.— Letters Patent No. 16,881, dated March 24, 1857. STEAM BRAKES FOR RAILROAD CARS.—T. E. Sickels, of Omaha, Neb. Letters Patent No. 16,884, dated March 24, 1857.

Receipts-When money is paid at the office for subscriptions, a receipt for it will be given; but when subscribers remit their money by mail, they may consider the arrival of the first paper a bona-fide

Subscribers-Who wish to have their volumes bound, can send them to this office. The charge for binding is \$1.50 per volume. The amount should be remitted in advance, and the volumes will be sent soon as they are bound.

City Subscribers,-The SCIENTIFIC AMERI-CAN will be delivered in every part of the city at \$3.50 a year. Single copies for sale at the News-stands in this city, Brooklyn, Jersey City, and Williams-burgh, and by most of the News Dealers in the United

### Advertisements.

The value of the SCIENTIFIC AMERICAN as an advertising medium cannot be over-estimated. Its circulation is ten times greater than that of any similar journal now published. It goes not all the States and Territories, and is read in all the princ pat libraries and reading-rooms of the world. We into it the attention of those who wish to make their business known to the annexed rates. A business man mants something more than to see his advertisement in a printed newspaper. He wants circulate on. If it is worth 35 cents per line to advertise in a paper of three thousand circulation, it is worth \$2.50 ver line to advertise in one of thirty thousand.

RATES OF ADVERTISING.

Back Page - - - 1'00 a line, Inside Page - - 75 cents a line, for each insertion.

Engracings may kead advertisements at the s line, by measurement, as the letter-press.

SMITH'S

# Patent Evaporator,

FOR drying and preserving Fruits, Vege-tables, Fish, Chemicals, Lumber, etc., etc. The simplest, cheapest, and most efficient machine in the world. Less fuel, repairs and labor than any other. Machines and territory for sale. P. O. Box 1158, Baltimore, Md.

1832. SCHENCK'S PATENT. 1870. Woodworth Planers. chitory, Engliss, Boilers, etc. JOHN B. SCHENCK' SONS, Matteswan, N. Y., and 118 Liberty st., New York

BENT, GOODNOW & CO.,

Boston, Mass., Publishers of "PATENT STAR,
self Patent Elights and goods of all kinds. Orders solicit
cd.

TF Send stamp for copy.

### Patents on Designs.

these patents cover all novelties of form or configura-on of article of man matter.

For further information address

MUNN & CO.,

No. 37 Park Row, New York.

#### CHALLENGE.

WINN'S IMPROVED PORTABLE STEAM

BRICK MACHINE.
THESE MACHINES have been in use three
seasons, and have proved their superiority over all
thers. As a steam Power Machine, making good comand the party winning to ven after bricks are burned, and the party winning wn all bricks made at the trial. WRIGHT & WINN, Lock Haven, Pa

WOOLEN MILL FOR SALE

American Twist Drift Co.: Manufacturers of Mechanics

TO DEALERS IN TOY STEAM ENGINES ing to other, as need as Using, constitutes as infrinceme EDWARD P. RYDER, Inventor or Dollar Steam Engir New York, March, 1871.

For Sale or To Let. A FACTORY for the manufacture of Iron Boits, with good machinery, valuable patents, and trade established. Will be sold, or leased on terms to asure a large profit. Address P.O.Box 2007.

New Caloric Engine, 4 HORSE Ericsson, Shafting and Pulleys for sale cheap, CHARLES D. TUTTLE, 115 Broad st R. E. F.GARVIN'S TAR REMEDIES cure Diseases of Heart and Lungs. Sold by Druggists.

MACHINERY and Fixtures, in great variety constantly on hand and finishing, by the PRATT of WHITNEY CO., Hartford, Ct. Samples may be seen with Messrs POST & CO., Cincinnati, O., and FRANK DOUG LAS, Chicago, Iil.

FOR SALE .- FOUNDERY AND MACHINE SHOP comprising male y, Foundery, 5337 ft., with youn all of brick. Also, on ug house and office. Above asks, patterns, and tools, as usiness. To parties having s now offered for investmen of the State. Address BA BALLARD & BELDEN, Canton, Stark Co., Ohlo



RUSS PATENT

## MONITOR MOLDING MACHINE R. BALL & Co., Worcester, Mass.

c., etc. Send for Illustrated Catalogue and Price Lis RICHARD BALL. E. P. HALSTED.

1871. Price List. 1871. ZSTUBS' Files, Tools, Wire, and Cast-Steel, wholesale and re-tall. Address A. J. WILKINSON & Co., 2 Washington st., Boston.

TO WOOLEN MILL OWNERS.—The ad

VINEGAR, how made in 10 hours, without drugs. Particulars 10 cts F.Sage, Cromwell, Conn

ATHE CHUCKS—HORTON'S PATENT from 4 to 36 inches. Also for car wheels. Address E. HORTON & SON, Windsor Locks, Conn. 10,000 USE IT. Mailed free for \$1
Address for circular, "Atwater's Letter Copier," Providence, R. I. Agents wanted. Terms lib ral. Sells rapidly.

WANTED.—Six Reed or Blanchard TACK
MA HINES, second-hand, and in fir-t-class order, trumer preferred. Address, stating price, to Box
77, Postoffice, Montreal. FIRST PREMIUM awarded by Am. Inst., 1870
MICROSCOPES, Illustrated price list and cataMAGICANTERNS, Quest free to my address.
T. H. MOALLISTER, Optician. 9 Nassau st., N. Y.

# THE PERFECT LUBRICATOR EWY

CAMERICAN CRAPHITE CO.

# FRAGRANT SAPOLIENE

CLEANS KID GLOVES, and all kinds of Cloths and Clothing; removes Paint, Grease, Tar, etc., INSTANTLY, without the least injury to the finest fabric. Sold by Druggists and Fancy Goods Bealers. FRAGRANT SAPOLIENE CO., 33 Barclay street, New York; 46 La Salle street, Chicago.

#### Trade-Mark Patents.

MUNN & CO. desire to call the attention of manufac turers and business men generally, to the importance the law of patents, as applied to trade-marks for busines

the law of patents, as applied to trade-marks for ousness purposes.

Any person, firm, or corporation, domiciled in the United States, or in any foreign country affording similar privileges to citizens of the United States, can obtain the right to the exclusive use, for thirty Years, of any Trade-Mark. consisting of any new figure, or design, or any new word, or new combination of words, letters, or figures, upon their manufactures.

This protection extends to trade-marks already in use

for any length of time, or about to be adopted.

on this important subject can of MUNN & CO. 37 Park Row, New York.



Send for latest Circular.
C. W. LeCOUNT.
South Norwalk, Co MACHINERY, New and 2d-hand, bought, sold, and exchanged. Engines, Bollers, etc. W. WILLARD, 45 Dey st, N.Y.

Gear's Variety Molding

Machine is the best in the world. Send for Circular.

A TION. It is an infingement to use the N. Y.

Wachine anywhere except in New York. Take Notice.

We mean business.

C ILICATE OF SODA, IN ITS VARIOUS forms, manufactured as a specialty, by Philadelphia Quartz Co., 783 South 2d st. Philadelphia Pa.

# BAIRD'S

HENRY CARRY BAIRD, Industrial Publisher, 400 Walcut St., Pailadelphia.

NEW AND INDISPENSABLE!!

JUST PUBLISHED. THE

## ARCHITECT'S AND BUILDER'S POCKET COMPANION

AND PRICE BOOK,

CONSISTING OF

A Short but Comprehensive Epitome of Decimals, Duodecimals, Geometry and Mensuration; with Tables of U.S. Measures, Sizes, Weights, Strengths, etc., of Iron, Wood, Stone, and various other Materials, Quantities of Materials in Given Sizes and Dimensions of Wood, Brick and Stone; and a full and complete Bill of Prices for Carpenter's Work. Also, Rules for Computing and Valuing Brick and Brick Work, Stone Work, Painting, Plastering, etc.

By FRANK W. VODGES, Architect.

By FRANK W. VODGES, Architect.

A Complete Guide for Coach Painters.

Duplais' Complete Treatise on the Distillation and Preparation of Alcoholic and other liquors. In-lustrated. 700 pp. 8vo.

Dussauces' General Treatise on the Manufac-ture of Vinegar. Illustrated. 425 pp. 8vo.

Callingham's Complete Illustrated Sign Writer. 12mo.

The above, or any of my Books, sent free of postage, at the publication prices. My new and enlarged Catalogue of Practical and Scientific Books, 82 pp., 8vo., sent free of postage to any one who will favor me with his address.

#### HENRY CAREY BAIRD,

INDUSTRIAL PUBLISHER,

406 Walnut st., Philadelphia, Pa.

Beardslee Nickel and Manufacturing Co., So and S2 Fulton st., Brooklyn, N.Y.

Right's sold for the use of, and instruction given in the best method of Nickel Plating. An ex-

years, in constant use.

PIRST PREMIUM AWARDED

as by the American Institute in 1870. Critical exami

nation of our work solicited. All goods sent to our Fac ill meet with prompt attention. York Office-4 Dey st., Room 2.

THE WOODWARD STEAM-PUMP MAN

Agents! Read This!
WE WILL PAY AGENTS A SALARY OF
Soo per week and expenses, or allow a large
commission, to sell our new and wonderful inventions.
Address M. WAGNER & CO., Marshall, Mich.

WOOD-WORKING MACHINERY GENerally. Specialties, Woodworth Planers and Hich ardson a Patent Improved Tenon Machines. Nos. 24 and 26 Central, corner Union St., Worcester, Mass. WITHERBY RUGG, & RICHARDSON.

BUERK'S WATCHMAN'S TIME DE DUERK'S WATCHMAN'S TIME DEand Manufacturing concerns—capable of controlling
with the utmost accuracy the motion of a watchman of
patrolman, as the same reaches different stations of his
beat. Send for a Greular, p. 0. Box 1,937 Rossion, Mass.
N. B.—This detector is covered by two U. S. Patents.
Parties using or selling these instruments without anthoray from me will be dealt with according to law.

M ACHINISTS' TOOLS, at greatly reduced prices. Also, some Woodworth Planers and Second-mand Tools. Wi to 115 B. R. ave., Newark, N.J. E. & R. J. GOULD, successors to Gould Machine Co.

CINCINNATI BRASS WORKS.—Engi-neers a - o Steam Fitters' Brass Work. Best Quarty st very Low Prices. F. LUNKENHEIMER, Prop'r.

H. W. JOHNS' IMPROVED

# Asbestos Roofing

ASBESTOS ROOF COATING.

ASBESTOS BOILER FELTING,

ROOFING AND SHEATHING FELTS,
BUILDING AND LINING PAPER,
and general Roofing Materials. Also,
A-BESTOS, Crude, Crushed, or Ground,
Full Descriptive Pamphlets, Frice List, and Samples

H. W. JOHNS, Sole Manufacturer, 78 William st., New York.

PREPARED

# Asphalte Roofing Felt.



70 Maiden Lane and 9 Liberty St., N.Y.

## FOOT LATHES,

GOODNOW & WIGHTMAN, 23 Cornhill, Boston, Mar

# Portable & Stationary

ND HOISTING ENGINES. A good ar ticle at low prices. Every machine warranted for descriptive Price List.

PATENT BANDSAW MACHINES



y FIRST PRYIBIL.

DORTABLE STEAM ENGINES, COMBIN J. C. HOADLEY & CO., Lawrence, Mass. 46. Cortland: st., New York.

THOMSON'S PATENT

on with any other Road Engine.

particulars, address the Sole Manufacturer in

D. D. WILLIAMSON,

P. O. Box 1809, or 35 Broadway, New York city.

Tanite Emery Wheels

A ND GRINDING MACHINES,
S. A. WOODS, General Agent.
Machinery Depot, bi Liberty at., New York.

STEAM YA'HTS'

ENGINES AND BOILERS, manufactured
for WARD & STANTON, office 52 John st., New
for Norious sizes, from 25 inch cylinder and upwards,
building or on band. Send for Circular.

Universal Wood Worker. FOR Agricultural, Railroad, Car, Carriage and Wagon Works, Planing Mill, Sash, Door and Billid, Redstead, Cablinet and Fractures Factories. McBETH, BENTEL & MARGEDANT, Hamilton,O.

\$5 TO \$10 PER DAY. MEN. WOMEN, who enduge he our new but mess make from \$5 to \$10 per day in their own localities. Full particular and in succious sent tree by unit. Those in meed of permanent, p of table work, hunting dreament of the sent tree by unit.

GOLDEN HILL Seminary for young ladies Bri Igeport, Conn. Miss EMILY NELSON, Principal

HUNG'ING', Trapping and Fishing. All about it. SEST FREE. Address "HUNTER," Riosdale, N.H.

# Newspaper Advertising.

THE CELEBRATED

Cold-rolled Shafting.

N. Y. Machinery Depot

Sturtevant Blowers.

GEORGE PLACE & CO., 136 and 128 Chamber st , New York.

kinds, Sugar Mills, Screw, Lever, Drop, & Hydrania Presses, Machinery in general. HUBBARD & WHITTA KER, 10: Front st., Brooklyn.

SHINGLE AND HEADING MACHINE-

PRIZE MEDAL SCROLL SAW,THOS. L. CORNELL, Derby, Conn.

THE CALVERT IRON ROLLING MILLS

N.B. PATENTED Articles introduced Also, State and County Rights sold for Intentors. STONE, PUGH & CO., 55 N. 8th st., Philadelphia

1826 USE THE VEGETABLE 1870 The old standard remedy for Coughs, Colds, Consumption. "Nothing Better." CUTLER BROS. & Co., Boston.

## THE NEW WILSON



SEWING MACHINES!

AGENTS WANTED.

P. BLAISDELL & CO.,

Hinkley Knitting Machine.

THE simplest, cheapest, and best in use Has but one needle! A child can run it!

Agents Wanted in Every Town.

Send for Liveniar and hample Stocking to Send for Circular and Sample Stocking to HINKLEY KNITTING MACHINE CO., Bath, Me.

PIMLICO BRACES, SOMETHING NEW

THIS invention is based on a strictly scientific principle, and is a valuable improvement on our style suspenders. It is simple in construction, and combines the qualities of Brace and Suspender. They are unequaled for clegance, durability and comfort. Manufactured at the Monumental Silk Works, Battimore, JOHN M. DAVIES & CO., Sole Agents, 384 & 386 B Wy, N.Y.

DECALCOMANIE PICTURES. & for paleters' use. M pages. Warranted to satisfy shrefunded. W. ATKINSON & CO., 1770 B'dway, N. T

RICH, Rare, and Racy Reading. Wit, humor, fun. Sent free. Address "Bannes," Husdale, N.H.

IMPORTANT

Machinery. MO BROADWAY, NEW YORK & CO.

GENTS WANTED.—To sell Stephen Patent Combination Rule, which embraces

Inventor's Exchange. 245 Broadway, N. Y.,

TANGIBLE INVENTIONS NEGOTIATED.

WOODBURY'S PATENT Planing and Matching

CHARDSON, MERIAM & CO.



Reynolds'

Gearing, Shatting.

Niagara Steam Pump.

CHAS. B. HARDICK, Adams st., Brooklyn, N. Y.

M ODELS, PATTERNS, EXPERIMENTAL

Milling Machine,

NDEX, STANDARD, UNIVERSAL, AND HORIZONTAL. -The largest variety to be found in country, on hand and fluishing. Workmanship, Maion at Fair of American Institute. UNION VISE CO. OF BOSTON. Office 80 Milk st. Works at Hyde Park,

Andrew's Putents. Double and Single, 1-2 to

out injury All Light. Simple, Durable, and Economical. Send for Circulars. WM. D. ANDREWS & BRO., 414 Water street, New York.

A MONTH! EMPLOYMENT
ENTRA INDUCEMENTS!
A promum Horse and Wadon for Agents. We desire to employ agents for a term of seven years, to sell the Buckeye Fal. 60 Shuttle Sowing Machine. It makes a stitch alike on both sides, and is the best low-priced ticensed machine in the world. W. A. HENDERSON & CO., Cleveland, Ohio, or St. Louis, Mo.

A LLCOTT'S LATHES, for Broom, Hoe, and Rake Handles, for Sale by L. W. POND, & Liberty st., New York.

TNRIVALLED Hand Saw Mill, Self-feed-

#### Advertisements.

Advertisements will be admitted on this page at the rate a



superior Construction and Beauty of Style and Finish BUT IIS PRINCIPAL FEATURE IS ITS

VERTICAL FEED!

SUPERIOR TO ALL OTHER MACHINES

THE DAVIS SEWING MACHINE COMPANY, of Watertown, N.Y.

#### Year Book of Facts FOR 1871.

JUST PUBLISHED

GOULD & LINCOLN.
No. 59 Washington street, Boston,
THE
ANNUAL OF SCIENTIFIC DISCOVERY

s sent by mail, postage free, on receipt of the

### Quantity vs. Quality.

DOOLEY'S YEAST POWDER stands proave not tried it, asks for it at you

DAINTER'S MANUAL, a complete and stices of color, etc. Includes, also, Practical Paper ging. 50 cts. Sold by all Booksellers, or sent by i, postpaid, on receipt of price, by JESSE HANEY & 119 Nassau st., New York.

NTONIO DE LA ROCQUE, Oporto, Por



WOOD & MANN Steam Engine Company, WORKS-UTICA, N.Y.

PRINCIPAL OFFICE-42 Cortlandt st., New York

### RUMPFF & LUTZ,

MPORTERS and Manufacturers of Aniline Colors and Dyestuffs, Colors for Paperhangers and stainers. Reliable recipes for Dyeing and Printing on silk, Wood, and Cotton. All new improvements in the art of Dyeing, and new Colors are transmitted to us by our friends in Europe, as soon as they appear. 42 Beaver street, New York.



MACHINE SCREWS FOR all purposes, with square, round, and heragonheads. A. W. GIFFORD & CO., Worcester, Mass.

PRATT'S

Oil Hones of CHARLES PRATT, Established 1779, New York. OIL: Hard Wood Boards

SPANISH CEDAR

FOR CIGAR BOXES,

And a large and magnificent assortmen

alt dealers. Send for Catalogue and Price List.

GEO. W. READ & CO.,

Factory, [291 Morroe at. 188, 10, and 17, 188].

Center st., New York city



s of the Skin. Recommended by Physicians Druggists, at 25 cts. JOHN F. HENRY, Sol 8 College Place, New York.

# An Important Fact. MARVIN & CO.'S

Have never been Robbed.



POWER PLEDGED EQUAL TO ANY OVERSHOT, WITH N. F. BURNHAM'S NEW TURBINE WATER WHEEL.

DATENT CUTTERS for the Teeth of Gear

PENN WORKS, MARINE ENGINES, BOILERS, ETC.,



Reid's Patent Cutting Tool.

w. T. & J. MERSEREAU, 62 Duane st.

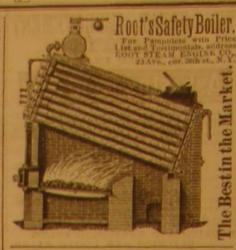
# D ROLLED

JONES & LAUGHIAINS, 130 Water street, Pittsburgh, Pa. 175 Stocks of this Shafting in store and for sale by ULLER, DANA & FITZ, Boston, Mass. GEO, PLACE & CO., 126 Chambers street, N. Y.

Engines, Tools, Machinery, etc., FOR SALE AT THE

Novelty Iron Works,

Foot of East 12th street, New York city.


EMBRACING Engines, Planers, Lathes,
Patterns of the most approved kinds, etc. Also, I High
Pressure Engine, 12-inch diameter by 20-inch stroke,
28tevenson's Pat-at Turbine Water Wheels, 66-inch diameter, and I Marine Beam Engine, 60-inches by 10-feet
stroke. Send for catalogue.

JNO. S. SCHULTZE,
RECEIVER OF THE NOVELTY IRON WORKS.
New York, March I. 1871.

WATER-PROOF BUILDING PAPER

(No Tan), for Roofing, Sheathing, Cellings, Oll-cloths shoe Stiffenings, Tags, Trunks, Cartridges, Blasting Pass-book Covers, Grain and Flour Bins, etc., for sale by J. HUNTER, Jh., Paper Warehouse, 59 Duane st., New York.

SPERM OIL, strictly pure, for SEWING MACHINES and fine Machinery, in bottles and bbia. hample by mail, 25 cts. W. F. NYE, New Bedford, Mass.



### WIRE ROPE.

JOHN A. ROEBLING'S SONS, MANUFACTURERS, TRENTON, N. J. L'OR Inclined Planes, Standing Ship Rigging

American Saw Co., Manufacturers of



# Swain Turbine

## 'Our Low-Water Wheel from this on'

WILL DO TEN PER CENT MORE WORK
on small streams, in a dry season, than any whee
ever lovented. Gave the best results, in every respect, at
the Lowell Tests.
For Report of tests at Lowell, with Diagrams and Taoles of Power, address

THE SWAIN TURBINE CO., North Chelmsford, Mass.

THE FIFTH GRAND STATE FAIR

Mechanics and Agricultural State Association of Louisiana

WILL be held on the Fair Grounds of the
Association, in the city of New Orieans, commencing Saturday, November 18, 1871, and continuing nine

# L. L. SMITH & CO.,

6 HOWARD ST., New York,

## UILDING PAPER

OF THREE GRADES. TARRED SHEATHING,

PREPARED PLASTERING BOARD.

DOUBLE THICK ROOFING nd Quartz Cement, make a good water and re-proof roof, for less than \$3.50 per square Sample and Circulars sent free, by ROCK RIVER PAPER CO., Chicago; or

B. E. HALE, 22 & 24 Frankfort street, N. Y.

MCNAB & HARLAN, Manufacturers of Wrought Iron Pipe and Fittings, Brass Cocks Valves, Gage Cocks, Whistles, Water Gages, and Oil ups, Hariln's Patent Labricator, Plumber's Brass Work letty's Patent Pipe Cutter, Getty's Patent Proving Pump and Gage. No. 86 John st., New York.

UNION

# Spoke Works.

POKES, RIMS, AND PLOW HANDLES.
All goods warranted seasoned, and of the best
youthwest cor. of Leonard and Otter sta, Philadelphia.

DEST DAMPER REGULATOR
for Steam Boller. Send for Circulars
Agents wanted. MURRILL & KEIZER, Baltimore, Md.

DAT, SOLID EMERY WHEELS AND OIL STONES, for Brass and Iron Work, Saw Mills, and dge Tools. Northampton Emery Wheel Co. Leeds Mass

RON PLANERS, ENGINE LATHES, brills, and other Machinists' Tools, of superior quality, on hand, and finishing. For sale low. For Description and Price address NEW HAVEN MANUFACTURING CO New Haven Conn.

A S. & J. GEAR & CO., Boston, furnish-Machinery and Supplies. The best in use, regardless of maker, at lowest possible rates.

# Harrison Boiler.

First-class Medal, World's Fair, London, 1803. And American Institute Fair, New York, 1809. Over 1,000 Boilers in Use.

# Weston's Patent Differential PULLEY BLOCKS.

HARRISON BOILER WORKS,

or, JOHN A. COLEMAN, Agent, 110 Broadway, New York, and 129 Federal st., Boston.

DOYLE'S

PATENT DIFFERENTIAL

# Pulley Blocks.

YOU BUY, SEE THAT THE BLOCKS ARE MARKE E. Pat, Jan. 8, 1861. All others are infringe SAMUEL HALL'S SON & CO.,

229 West 10th street, New York.

# THE Allen Engine Works

Four first premiums were awarded to us at the Fair of the American Institute, 1879. Send for our illustrated circular.

L. W. Pond--- New Tools. EXTRA HEAVY AND IMPROVED PATTERNS.

ATHES, PLANERS, DRILLS, of all sizes.

Vertical Boring Mills, ten feet swing, and under;
milling Machines, Gear and Bolt Cutters; Hand Punches
and Shears for from.

Office and Warerooms, 98 Liberty st., New York; Wor'
at Worcester, Mass.

A. C. STEBBINS, New York, Agent.

Steam Super-Heuter, FOR Saving Fuel, and supplying Dry Steam of any desired temperature. Safe, durable, easily at-tached. H. W. BULKLEY Engineer, Skliberty st., N.Y.



\$250 A MONTH with Stencil Dies, Samiples free. Address S. M. SPENCER Brattlebore Vt.

## Tanite Emery Wheel. Does not Glaze, Gum, Heat, or Smell. Address THE TANITE CO., Stroudsburg, Moaroe Co., Pa.

Working Models
d Experimental Machinery, Metal, or Wood, made to
ler, by J. F. WERNER 62 Center st. N.Y.

HOTCHKISS BRICK AND TILE MA-cret, New York.

## Scientific American For 1871.

TWENTY-SIXTH YEAR.

EVERY NUMBER is printed on fine paper, and elegantly illustrated with original engravings,

New Inventions, Novelties in Mechanics Manufactures, Chemistry, Photog-raphy, Architecture. Agriculture. Engineering, Science,

and Art.
Farmers, Mechanics, Inventors, Engineers, Chemists
Manufacturers and People of all Professions or Trades

SCIENTIFIC AMERICAN

of great value and interest.

The Editors are assisted by many of the ablest American and European Writers, and having access to all the leading Scientific and Mechanical Journals of the

world, the columns of the SCIENTIFIC AMERICAN are con-stantly enriched with the choicest Information. An Official List of all the Patents Issued is published

The Yearly Numbers of the SCIENTIFIC AMERICAN make two splendid Volumes of nearly ONE THOUSAND PAGES equivalent in size to FOUR THOUSAND ordinary book pages. SPECIMEN COPIES SENT FREE.

TERMS-\$3.00 a year, \$1.30 half year; Clubs of Ten Copies for one year, at \$2.30 each, \$25.00, With a SPLENDID PREMIUM to the person who forms the Club, consisting of a copy of the celebrated Steel Plate Engraving, "Men of Progress."

## MUNN & CO.,

PUBLISHERS OF THE SCIENTIFIC AMERICAN.
37 Park Row, New York.

THE "Scientific American" is printed with CHAS, ENEU JOHNSON & CO.'S INK. Tenth and Combard sts., Philadelphila, and 59 Gold st. New York.