A WEEKLY JOURNAL OF PRACTICAL INFORMATION IN ART, SCIENCE, MECHANICS, CHEMISTRY AND MANUFACTURES.

Vol. XII.---No. 26.

NEW YORK, JUNE 24, 1865.

\$3 PER ANNUM IN ADVANCE.

Improved Attachment to Steam Boilers.

This machine combines in itself the steam gage, pendages. The accompanying article was furnished for publication.

The ordinary spring balances or weighted levers, as regulators for the safety valve, are liable to several objections, which arise from the nature of the spring and the lever as applied to them. The spring balance is too slow to act in case of any sudden or undue generation of steam in the boiler, and consequently always requires the watchful eye of the engineer, in such cases requiring both tripping by the hand and often a lessening of its tension. Should the engineer be called away it will allow an escape of steam long after the pressure has come down to its nominal standard. This is both dangerous and annoying.

The machinery here illustrated not only entirely overcomes these difficulties as a safety-valve regulator but is also a superior pressure gage that will indicate the varying pressure of steam from one pound up to what the regulator is set at, beyond which the pressure cannot get. It is also an accurate and delicete water indicator, showing the varying hights at which the water stands in the boiler. Should the water, through neglect, get very low, it will sound an alarm whistle that cannot fail to attract the engineer's attention. Should the alarm be neglected and the water fall to a dangerously low level it will then allow the steam to escape through the safety valve at a very rapid rate so as to reduce its elastic force immediately, and thus insure the safety of the boiler. The following description, in connection with the illustration will render this device intelligible. It consists of a cylinder, A, fitted with the piston heads, B B', working steam-tight in the cylinder and made fast with the rod, C, which works through the stuffing box on the top of the cylinder. Steam is admitted through the apertures, D D, from the boiler and the area of the head, B, is greater than that of B', by as much as the area of the safety valve lessened by the amount the long arm of the safety-valve lever is greater than the short, and the rod, C, is made fast at the top to this lever. This is after making due allowance for the weight operating on the end of the lever of such parts of the regulator as have a gravitating effect on it. The rod, C, is hollow throughout, and is perforated by the apertures, ccc'c', and is fitted with the collar, C', which

made fast on to the small rod, e, and works steam- parts of the regulator acting by gravity on the lever extremely useful. It is designed on scientific princitight in the hollow rod, C. One end of the spiral be 5 lbs., and it the total effective area of the head, ples and will be found to perform all that is claimed spring, F, is made fast to the collar, C', and the other B, be two square inches, that of the head, B', must for it in the most reliable manner It will relieve the to the rod, e. The upper end of this rod constitutes be one and three-quarter inches. The total pressure engineer from incessant watching of innumerable

lever be, say 30 lbs., when the pressure in the boiler is acting, having free access through the apertures,

RIORDAN'S ATTACHMENT TO BOILERS.

can be operated as a hand screw. The valve, E, is | is 50 lbs. on the square inch, and if the weight of any | not be liable to get out of order and cannot but prove

turn the hand, H, upon the face of the dial, I. When | 75 lbs., so as to exactly counterbalance the lifting steam is generated in the boiler, and enters by the power at the end of the safety-valve lever. The colwater indicator, safety valve regulator, alarm and apertures, D D, it presses downward on the head, B, lar, C', is screwed down on the rod, C, which has a blow-off, and is designed to fill the place of these ap- and contrariwise on the head, B'. Now, if the total graduated face for its regulation, so far as to prevent lifting power of the safety valve, at the end of its the valve, E (on the under side of which the steam

> cc), from overcoming the power of the spring, F, and clearing the apertures, c' c', until the steam has got up to 51 lbs., when the valve will rise above the apertures, c' c', and steam from above the head, B, will escape into the air. This will prevent the total pressure on the head, B, from exceeding one hundred lbs., while that on the head, B', becomes 761 lbs., which has an effect on the safety valve the same as if the ordinary spring balance were suddenly reduced in tension by two pounds-and so on for every one pound increase of pressure on the boiler, this regulator allowing an accelerating escape of steam through the safety valve. This action is exactly reversed as the steam comes down to its normal pressure. It is easy to see that as the pressure in the boiler varies, the valve, E, acting under the control of the spring, F. will be moving up or down, thus acting through the gear wheels, G G, on the index hand, H.

The cylinder, A, is fixed on the boiler so that when the water stands at the proper hight in the boiler it will stand at a certain hight in the lower part of the cylinder, A. In this is fitted the float, J, made fast on the rod, K, and having a rack on it acting on the index, L, through the gearing, M M; and the rod K, is provided with stuffings or packing, N N'. Now, when the water stands at the proper hight in the boiler, the stuffings, N N', will prevent any escape of steam, but when the water gets low the float, bringing down the rod and stuffings, on the upper one, N', coming below the aperture, a, steam will escape through the flexible pipe, a', and sound the alarm whistle, b. Should this not be noticed, on its coming further down, there being slots in the hollow shaft, steam will escape into the air. This steam, coming from above the piston head, B, will have the same effect on the set to control a smaller pressure and that the escape were through the apertures, c' c'. This arrangement may appear a little difficult to comprehend at first sight, as the principle of the regulator is entirely novel, but everything is simple in construction, and the whole arrangement will

a rack which operates suitable gear wheels, G, that on the upper head will be 100 lbs., and on the lever gages, cocks, tubes and balances—which is done

much to the detriment of other parts of the machin- speed of five to one; so that the pulling rope, in ery under his care, which often suffers for the want of supervision. The inventor is desirous of introducing it among engineers, and for all further information address him, care of Munn & Co., Washington, D. C. This machine was patented on January 31, 1865,

by Peter Riordan.

Steam Plowing in England.

At a meeting of the Institution of Mechanical Engineers in Birmingham, England, on the 4th of May a paper on steam plowing was read by Mr. David Greig, of Leeds, giving the results of Mr. Fowler's experience in steam cultivation during the last eight years, in continuation of a previous paper read by him upon the same subject. The difficulties that have been met with in applying steam power to cultivation have arisen from the irregularities in the level of the ground, the changes necessary in the position of the machinery on the ground, the necessity for moving heavy engines where there are no roads, the want o a rope sufficient strength and elasticity, and the different states of the soil from changes of weather. To attach the moving power direct to the implement, as is done in the case of horses, was found not suitable with a steam engine, from the loss of power in moving such a heavy weight over inequalities of the ground, and from the compression caused by its traveling over the soil to be cultivated. Hence the use of a rope driven by the engine became requisite for working the implement. The rope is held up from touching the ground by a number of rope porters or carrying pulleys, mounted on wheels and placed at intervals along the entire course of the rope; those supporting the portion of the rope that is attached to the implement are withdrawn and placed again by boys, each time that the implement passes across the field. The earlier arrangements of leading the rope from a stationary engine, round the corners of the field and along the headlands, or diagonally across the field in a triangular plan, have now been generally superseded by the improved system of direct pull, in which the implement is pulled backwards and forwards across the field by a rope passing across direct from the opposite headland, both the engine and anchor being made to travel slowly along the headlands each time of the course of the implement being reversed. The rope was at first driven by two drums fixed under the engine, being wound up on one drum and unwound off the other alternately. Afterwards the length of the rope was diminished by the use of an endless rope, driven by friction by passing round a grooved driving pulley, instead of being wound on and off a drum; but the different plans first adopted for the purpose of obtaining the necessary adhesion for driving were attended with serious difficulties, from the wear and tear of the rope and the grooves of the driving pulley.

These difficulties have now been effectually surmounted by the valuable contrivance known as the "clip drum," in which a sufficient bite is obtained by only half a turn of the rope round the driving drum. This very ingenious apparatus consists of a series of pairs of jaws or clips, hinged round the circum/erence of the driving drum close together in a continuous line, forming a complete groove all round the drum. As the rope come in contact with the drum, each pair of clips in succession closes upon it and seizes hold of it, and continues to grip it throughout the half revolution until the rope leaves the drum; the force of grip being in all cases proportionate to the pull of the rope, and such as effectually to prevent slipping. The width of opening of the two rows itself, while the other row is centered upon a ring, thread chased round its entire circumference; to that by turning round this ring in either direction, the distance between the two rows of clips is simultaneously increased or diminished to exactly the same extent in every pair of clips. A working model of the clip drum was exhibited, and a full size specimen of one of the pairs of clips.

In order to allow for working fields of irregular boundary, the implement is provided with an arrangeof a pair of barrels geared together with a relative identical with it in construction.

drawing off one loot length of rope from the one barrel, winds up five feet length on the other; and thus all the slack is taken up and the rope drawn tight, before the implement can start to work. For getting heavy engines moved about over ground where no roads exist, the whole of the machinery is made so strong that it cannot be broken by the full steam power, the steam itself being thus the weakest part of the whole machine; and the width of the carrying wheels is increased to such an extent as to ensure carrying the engine over the wettest and softest ground, the width of carrying wheel having been made as much as 21 ft. in special cases. A pair of engines of smaller size and weight are also used in some instances, placed on the opposite headlands of a field, and both constantly in action, drawing the implement backwards and forwards between them, instead of a single heavy engine at one side of the field with an anchor at the opposite side, as previously described. The first rope used for steam cultivation was made of iron wire; but this was so unsatisfactory, from its softness and want of durability, and also from its great weight and the power consequently absorbed in dragging it, as to check for a time the application of steam power to cultivation. Steel wire was then introduced for the purpose; and in consequence of its great improvements that have been effected in the machinery by which the ropes are driven, and also in the quality of the wire itself, one steel wire rope now lasts for the cultivation of from 2.000 to 4,000 acres, according to the nature of the soil and the width of the implement used. The steel wire rope at present used, of which a specimen was exhibited, is I1-16ths inch diameter, and weight about 2 lbs. per yard, running on an average 9,000 miles under a tension of 25 cwts., and costing about 21d. per mile run. The difficulties that would arise in working engines and tackle in wet weather, from the sticky condition of some land in a half wet state, particularly clay land, are met by the power that steam gives of performing the work altogether while the land is dry; which is impossible on a clay farm with horse power alone, from the want of sufficient power to break through the hard ground until softened by rain.

For applying steam power to cultivation, the use of rotary implements has been much advocated; but these have the serious detect of striking on the hard surface of the land, and thus absorbing much power in entering it; and the work is found to be more economically done by shares or tynes entering in the softer soil below and wedging the earth off to a loose side. By the aid of steam the ordinary plough shares can now be driven at such a speed as to throw the earth sideways in a manner quite equal to the effect of any digging by hand. The principal mechanical conditions essential to the success of steam cultivation appear to be-an engine of simple construction, ample power, and sufficient width of bearing surface; a hauling apparatus with a horizontal drum of large diameter, avoiding any sharp bends of the rope; a direct pull upon the implement, with a rope of good quality and of as short a length as possible; a means of keeping the rope always tight and clear of the ground; an implement which wedges off the soil to a loose side, by means of shares or tynes following each other consecutively; and lastly, as small an amount of manual labor as is practicable. In the use of horses for ploughing, a large portion of their power is wasted in merely undoing the effect produced of ropes, by having one row centered upon the drum is less than one third that of the horses, and is car- a million of cattle; composing the prin ried upon broad bearing wheels; and in consequence which is screwed upon the body of the drum by a of a very much greater amount of force being brought to bear on the implement, the work is performed with much greater expedition and far more effectually than

Jupiter, Mr. H. Huggins, F.R.A.S., observes that several lines in the spectrum of that planet indicate a powerful absorption by its atmosphere. These were ment of slack gear for taking up the slack of the rope, compared with the lines of our atmosphere. The miles long to carry it. as the working length of the rope becomes reduced atmosphere of this planet contains some of the gases.

The Shape of Chimney Tops.

Dr. Gironard recently wrote as follows to the Mondes (an excellent weekly scientific paper, published in France, under the direction of the learned Abbe Moigns) :-

"Positive experiments have demonstrated in the most complete manner the following principle:- The air in passing with force over any vessel provided with, at its surface, an orifice of small diameter, produces a vacuum in that vessel. If we place a glass receiver, provided with a small opening at its summit, or a stop cock, upright upon a liquid, and it, by aid of a blowpipe or a tube, we blow strongly over it, the liquid will rise into the receiver and fill it. To obtain a vacuum by means of current of air, it is necessary that this should be brisk, and powerful enough to displace and carry with it the column of air standing over the orifice, and the surrounding air, and that the openings should be disposed in such a manner that the air passes over and does not entethe vessels. The vacuum obtained by currents of a produces the same effect as that obtained by an ai. pump. In making experiments on liquids strong insufflations made with the mouth, by aid of a blowpipe, over glass receivers of several litres capacity, and over six wide tubes, several metres high, provided with stop-cocks with narrow openings, have sufficed to make the liquids on which they were placed ascend and fill them, when after each insuffiction I shut the stop-cock." [This latter precaution would evidently be unnecessary if the current of air was continuous, as in the case of the wind.1

Again, on the 19th, M. Gilbert-Charrier writes to the same periodical from Chartres, describing some further experiments made with mercury by Dr. Giron-

"The results has been so complete that in a tube 7 centtimetres(23 in.) high, 2 centtimetres (4-5in.) internal diameter, terminating in the form of a dome with an opening of 7 millimeters (5-18 in.)diameter, each insufflation made obliquely with the mouth by aid of a glass tube at the base of the cone, raised, displaced, and carried with it a column of air, and effected a vacuum so complete that at each blast the mercury rose in the tube to the height of 15 millimeters a column of mercury weighing 60 gram. (926 troy

Here, says a correspondent of the London Mining Journal, we have the germ of an idea as to the form the summit of a chimney should take-that of a dome or cone. A tell-shaped termination to any chimney is not the right form, especially for a locomotive, in which draught is the principal element of its motivepower, encountering at high speeds a current of air equal in force to a strong gale. The tendency of the wind is to go down, and not up, a chimney with a wide orifice. In the above experiments the tube blown through was slightly inclined upwards, and in practice the wind striking against the upper part of a domed surface would pass over the orifice in an upwardly-inclined direction. It seems to me singuiar that the Doctors Gironard and Charrier did not think of applying the principle they demonstrated to the improvement of factory chimneys.

Commerce on the Lakes.

The commerce of the great lakes amounts at present to at least twelve hundred millions of dollars annually, and increases so rapidly that all estimates of its prospective value have hitherto fallen short of the truth. It employs about two thousand vessels and twenty thousand sailors, besides four great lines by their weight in treading down the soil; but with of railroad. It sends to the seaboard one hundred of clips is adjusted for working with different sizes the steam plough the weight traveling over the field million bushels of grain, two million hogs, and a half the food of the Atlantic States and affording a large surplus for exportation. It being well known that the wheat crops of New York would hardly feed her people for one-third of the year, and that that of the by horse labor, ensuring an adequate crop in all New England is sufficient for only about three weeks' consumption. The cereal wealth yearly floated on these waters now exceeds one hundred million bushels. As the result of some observations on the planet It is difficult to present a distinct idea of a quantity so enormous. Suffice is to say that the portion of it (about two-thirds) moving to market on the Erie and Oswego canals requires a line of boats more than forty

On the lakes it requires a fleet of five thousand vesby the narrowing of the boundaries. This consists or vapours present in our atmosphere, but it is not sels, carrying twenty thousand bushels each. If leaded in railroad cars of the usual capacity, it would take two hundred and fifty thousand miles in length. alongside, one thousand nine bundred and seventy The four great lines from the lake to the seaboard miles of cable, no fault has been discovered." would each have to run four hundred cars a day for half the year to carry this grain to market. This grain trade is a new fact in his history of man. In quantity it already much exceeds the whole export of 29th. The completion was witnessed by a numerous cereals from Russia, the great compeer of the United and distinguished party, and as the end was deposited States, whose total export of cereals was, in 1857 but terty-nine million bushels, being less than half then adjourned to the Ship Tavern, where a sumptuous sections, each of which is provided with openings for the amount carried in 1864 upon the American lakes. It was the constant aim of ancient Rome, even in the zenith of its power, to provision the capitol and its adjacent provinces from the outlying portions of the empire. The yearly crop, contributed by Egypt, was fifteen million bushels. Under the prudent administration of the Emperor Severus, a large store overlaid at the rate of one hundred and seventy-three manner that brick or other material introduced into of corn was accumulated and kept on hand, sufficient to guard the empire from famine for seven years. The product of 1860 in the five Lake States of Ohio, Michigan, Indiana, Illinois, and Wisconsin, was three hundred and fifty-four million bushels.

Testing the Telegraph Cable.

The London Telegraph in an article on the new cable for the Atlantic telegraph gives this account of the manner in which it is tested:-"It seems impossible that there can be any fault in the Atlantic cable when the Great Eastern goes to sea. To say nothing of the tests applied to it at the manufactory, it is tested not alone after it has been taken on board, but during its delivery into the ship. As soon as a length is brought alongside, one end is connected with the coils already on board, and the other end with the instruments in the testing room. The circuit is thus made through the whole extent of the coil-the portion on board and the portion alongside. The process of hauling in then commences, and the insulation is continuously observed. The instruments in the testing-room record the smallest deviation from absolutely perfect insulation. It will be understood that an insulation which shall be quite perfect, as an electrician understands the word, is not attainable. A piece of metal separated by means of the purest glass, and enclosed in the driest atmosphere that can be obtained, will, if charged with electricity, lose that electricity after a time. In speaking of insulation we must therefore be understood to mean an approximate condition; but the approximation in the case of the new Atlantic cable comes so near to perfection that this rough tarry rope s a scientific wonder.

"The last dying pulsation of the old Atlantic cable was forced through by means of a galvanic battery consisting of two hundred and forty cells. The submarine telegraph from London to Amsterdam is habitually worked with a battery of fifty cells, and such a battery is commonly used for the other submarine lines to Europe. Signals have been repeatedly sent through more than thirteen hundred miles of the cable now on board the Great Eastern by means of one cell. Galvanic currents so feeble that they could not have been felt by the hand, and might have been passed harmlessly through a circuit completed by the operator's tongue can be used to convey messages along a length of cable that should very nearly stretch from London to St. Petersburg. Over needle instruments such as those in ordinary use for land telegraph a current from one cell would

"To record such faint pulsations of electricity it is necessary to use Professor Thompson's mirror galvano-meter. This beautiful instrument consists of a like a fern, but are hard and wooly. The leaf-sheath mirror about the size of a fourpenny piece, made of is fibrous, and in texture like woven-cloth. The is, and so thin that it weighs only a grain. On the back of this mirror a minute magnet is fixed, and thus supplemented it is suspended by a silken fiber in the heart of a coil of wire, so that any current passing through the coil deflects the magnet and the mirror along with it. A ray of light reflected by the mirror falls on a scale, distant about eighteen or twenty inches, and reveals its faintest movements. Different combinations of these movements represent the different letters of the alphabet, and thus the apparently erratic wanderings of a ray of light are made to convey intelligence. An instrument of this kind is constantly used to test the cable, as it is hauled on board; and if any fault had existed it could not have passed without detection. Up to in Scotland, causing great consternation among the and apply the paste to the saucers. Less chalk may this time, when there are on board the ship and passengers.

The Telegraph Cable Completed.

The Atlantic telegraph cable was completed on the in the tank hearty cheers were given. The company banquet was given in honor of the event by the Tele- introducing the fuel and the materials to be burned, graph Construction and Maintenance Company (late and communicates through a radiating flue with an Glass, Elliott & Co.), the makers of the cable.

of seventeen miles per day complete, and in some smoke stack communicating with said annular smoke days its outside covering of hemp and iron has been chamber by four (more or less) passages, in such a miles a day, through not a fathom or a foot has been the several sections of the kiln can be gradually manufactured without every part being kept under constant test for "conductivity" and insulation, and can be continued for any length of time with great to this hour it is as regularly tested as it was a year economy in fuel. T. E. Hoffmann, of Berlin, Prusago when the first mile was twisted. It is believed that sia is the inventor. the Great Eastern will start in the very early part of July, and certainly, if possible, not later then the separator for separating impurities from thrashed 10th. With her will also sail her Majesty's ship Terri- grain, and also for separating oats from wheat. It ble and another paddle wheel steam frigate of great consists in a novel and improved means for operatpower not yet chosen, but which, like the Terrible, ing or communicating a shake-motion to a shoe conwill give towing aid to the Great Eastern in case of taining a series of screens, and also in a novel armishaps to her machinery, either screw or paddle. Every care has been taken to get these engines into in the manner of hanging the shoe and a screen bethe highest state of good working order; but it can-low it, whereby the device is prevented from becomnot be denied that the very possibility of their break- ing choked or clogged and made to operate far more ing down is looked upon with something like anxiety. They will certainly not be overtasked, as it is intended. if possible, not to let the vessel go beyond a speed of six knots, a minimum of velocity which it will be mounting the roller on a flexible plate with lugs which difficult to keep to if steerage way is wanted quickly, can be spread or sprung open to admit the roller, if and which will, be found absolutely impossible to re tain in a seaway. On this occasion, however, the either used as a plain bottom roller or that it can be middle of July is chosen as being thought even more applied to the corner by securing one end of the plate favorable in point of weather than the middle of June, when the last Agamemnon cruise was commenced. Captain Anderson, is in favor of starting towards the early part of July, and his long experience in command of the China has very properly induced the directors to give every weight to his opinion. In addition to Captain Anderson, all the officers connected with the ship, with the exception of the chief engineer, ordinarily fair weather, and steaming at the rate of in an improved brake for checking the speed or stoptia to the Bay of Hearts' Content, in Newtoundland, will occupy from twelve to fourteen days, during every hour of which regular communication will be kept up with England.

Tropical Vegetation.

A correspondent of the Boston Commonwealth

"I have been a little astonished at tropical vegetation; taken as a whole, in differs externally very little from temperate in appearance. The palms, canes and vines alone would distinguish it is a superficial observer. The palms are almost all along the waterside, the cocoa-palms only grow by the sea. The prettiest plants are the banana-plants, which have broad, light-green leaves, which are so very tender that the wind often breaks the leaf on each side of the midrib into fringes. The male flower is shaped like a top, and hangs down some distance below the bunch in the early stages of the fruit. The palms are shorter in the trunk than those you generally see in pictures. The leaves of the palm are something best dishes they have here are Trijoles, a kind of red bean, and fried plantains, which I liked very much. They taste between a sweet-potato and a peach."

REDUCTION IN TERMS.

for the ensuing volume of the SCIENTIFIC AMERICAN, we offer to take subscriptions in Clubs of ten or more at \$2 50 per annum. We trust that our friends will set themselves to work to get up Clubs at the rate here proposed.

A BAILWAY train recently ran into a water spout

RECENT AMERICAN PATENTS.

The following are some of the most important improvements for which Letters Patent were issued from the United States Patent Office last week; the claims may be found in the official list:-

Circular Oven .- This invention consists in an endless arch or channel divided into a series of distinct annular smoke chamber, in combination with suita-The cable has been made on an average at the rate | ble slides or movable partition and with a central heated and cooled, and the operation of the kiln

> Grain Separator. - This invention relates to a grain rangement of said screens within the shoe as well as efficiently than the ordinary separators in use. S. K. Ayres, of Delton, Wis.

> Roller for Trunks .- This invention consists in it is desirable, in such a manner that the roller can be to the bottom, and turning its other end up over the edge and securing it to the side of the trunk, as may be desirable. John Schmadel and John A. Lieb, of Newark, N. J., are the inventors.

Boy's Sled .- This invention relates to a an improved sled for children, and it consists in constructing the sled in such a manner that it may be extended or enlarged, as may be desired, in order to hold a have been chosen from the Cunard service. With greater or less number of boys; and it also consists six knots, it is expected that the voyage from Valen- ping the sled when necessary; and further, in an improved guiding or steering apparatus. D. G. Hussey, of Nantucket, Mass., is the inventor.

USEFUL RECEIPTS.

To Powder Camphor. - Camphor may be beaten in a mortar for some time, without being reduced to powder, but if it be first broken with the pestle, and then sprinkled with a few drops of spirit of wine, it may be readily pulverized. Powdered camphor is much used in tooth powders, fireworks, etc.

PORTABLE LEMONADE. - Tartaric or citric acid 1 oz.; finely-powdered loaf sugar 1 lbs; essence of lemon 20 drops; mix; 2 or 3 teaspoonfuls make a very pleasant glass of extemporaneous lemonade; also powdered sugar 4 lbs.; citric or tartaric acid 1 oz.: essence of lemon 2 dr.; mix well. As last. Very sweet and agreeable.

FURNITURE, PASTE. - Turpentine 1 pint; alkanet root 1 oz.; digest until sufficiently colored, then add beeswax, scraped small, 4 oz.; put the vessel into hot water, and stir until dissolved. If wanted pale, the alkanet should be omitted.

Fumigating Pastilles.-Powdered gum benzoin 16 parts; balsam of tolu and powdered sandal wood, of each 4 parts; a light charcoal (Linden) 48 parts; powdered (ragacanth and true labdanum, of each 1 part; powdered nitre and gum arabic, of each 2 parts; With a view to encourage the formation of "Clubs" cinnamon water 12 parts; heat to a smooth duetile mass, form into small cones with a flat tripod base, and dry in the air.

PINK SAUCERS .- Well washed safflower 8 oz.; carbonate of soda 2 oz.; water 2 gallons; infuse, strain, add French chalk, scraped fine with Dutch rushes, 4 lbs.; mix well, and precipitate the color on it by adding a solution of tartaric acid; collect the red powder, drain, add a very small quantity of gum, be used for a very fire article.

Improved Hydraulic Motor.

Atter propelling the first screws, the water passes through the opening, C, into another case containing more screws, when whatever force remains in the water is taken up by it. A third case and a third set of screws is provided, but in this instance the water enters at the center and discharges at each end. Any number of cases and screws may thus be employed and act with useful effect; the end of each cylinder or screw is prolonged into a shatt on which there is a pulley to transmit

We have given the inventor's views of this machine, and not our own. One of them may be seen running at the aqueduct bridge, Georgetown, D. C., where a series of experiments are being made with it.

It was patented on May 31, 1864, by Thomas Welham; for further information address him at 100 Broadway, New York.

Method of Transmitting Power.

It is well known to mechanists that in order to transmit power at right

in their vicinity.

ed through the opening-as shown by the arrows, on the common instrument. By the simple adoption four at the Barrow Steel Works, is making castings

WELHAM'S HYDRAULIC MOTOR.

angles it is necessary to use bevel gearing, universal of two small bevel wheels, the rose head or counter- through the hose, B, comes in contact with the wheel joints or similar devices. These consume power, and sink, is caused to revolve, thus cutting away the de- the brush will revolve with great velocity and conin the case of gearing make a great deal of noise cayed parts very rapidly and producing a much better siderable power. For cleaning carriages, windows, and jar, which render delicate operations impossible artificial cavity in a shorter time, for the introduction wood-work of any kind, or machinery, this brush will of the filling, than is possible with the old-fashioned

WELHAM'S METHOD, OF TRANSMITTING POWER.

pects desirable. In construction it is simply an elastic | rangement. A patent is now pending on this inven- | way, New York.

tic shaft, A, composed of rubber strengthened with canvas, or of gutta percha, and surrounded externally with a wire, B, to preserve its rigidity when under strain; C is a pulley standing obliquely with the prime motor, D, from whence the power is derived. It is claimed that by this device a simple and efficient transmitter of power is ob-

This invention was patented by Thomas Welham, on Jan. 31, 1865;

Improved Rotary Countersink. Those persons who have undergone the delightful The Birmingham correspondent of the London country.—EDS.

WELHAM'S ROTARY COUNTERSINK.

ham, No. 100 Broadway, New York.

Extension of the Bessemer Manufacture

experience of tooth-filling and plugging in all its va- Engineer says:-"The growing application of the In this machine Mr. Welham claims to have util- ried details, will appreciate anything that tends to Bessemer system to the production of steel, with that ized the whole power of the water. In an interview alleviate their sufferings. Dentists will know how much larger attention that is being paid now then with him he stated that, being convinced that the for value the instrument here illustrated, for by the has been pa'd for some time past to the application of the force of any stream could be employed, he designed this arrangement to effect the object. The feetly executed. It also saves the patient from fa- growing demand in South Staffordshire. Mr. Claymachine, in detail, consists of right and left-handed tigue, lessens the flow of saliva from this cause, and ton, at Westbromwich, is now erecting eighteen furscrews, A, in the case, B, to which water is admit- is, in other obvious points, a desirable improvement naces, at the works of the Dowlais Company, twenty-

> for six at Ebbw Vale, is on with the third lot for Mesers. John Brown & Co., Sheffield, and after putting up twenty-two for Messrs. Cammill & Co., at the Cyclops Works, in the same town, is now putting up six for the Yorkshire Steel and Iron works of the same firm at Penitone. The same maker is also putting up furnaces at the Lancaster Steel Works, Gorton-lane, and at the Gibralter Works, Newton Heath. These furnaces are all for smelting iron to make steel or for the heating of ingots of steel."

HYDRAULIC BRUSH.

This is one of the most decided novelties in the way of brushes that we have seen in a long time. It is not only novel but useful, and can be employed with great advantage in many places. It is simply a brush constructed with a small turbine wheel, A, at the back and set in a proper frame, so that when the stream of water, which is forced

be found valuable, for the rotary action of the brush, in connection with the water, causes it to perform with unsurpassed rapidity and effect.

Since the brush revolves the bristles are always

worn evenly to the butt, and it lasts much longer than a common "Turk's head" brush, which is gen The inventor of this arrangement claims that it is | tool. It is not at all cumbrous or heavy, and is, in | erally used for washing windows. We think this a an efficient and useful substitute for gearing; that it all respects, desirable. The handle, A, is station- valuable and useful novelty. It was patented on is wholly noiseless, may be used at any angle, re- ary, and the gears are revolved by the shaft, B, and Jan. 31, 1865, by Thomas Welham, of Baltimore, Md. quires no adjustment or lining up, and in all other res- rod, C, the section, Fig. 2, shows the internal ar- For further information address him at 100 Broad-

> A PUMP WHICH CATTLE CAN WORK THEMSELVES .- Mr. Cousins, of London, has invented a pump by which cattle can water themselves without human aid. The water is forced up by the weight of the animal operating on a platform which sinks down a certain distance by its weight, causing the water to rise in the pump and to flow out to the ex tent of three pailsful. As soon as one has slaked its thirst, another

for further information address him at 100 Broadway, | tion; for further information address Thomas Wel- | takes its place on the platform which brings up anoth er supply, and so on till all the flock are watered. This is a labor saving affair, certainly.—Canada Farmer

[There are several patents on such pumps in this

Improved Steam or Gas Engine.

These engravings represent Welham's steam or gas engine, which consists of two right and left hand screws, A, set in a case or cylinder, B. These cylinders are placed in the boiler, C, and receive steam therefrom.

One of the cylinders has a central flange, D, upon it, against which the other cylinder works; the alternate action of both, in contrary directions, tending to balance the pressure on the cylinder, so that it is not all thrown on one end of it.

The steam enters the case, B, at E; and after passing its length, issues into the other cylinder, F, and finally through an cpening into the atmosphere when used as a high pressure engine, or into a condenser when used at low pressure.

The screws are both connected by gearing, H, so that their rotation is balanced or equilibriated. By inclosing the cylinders in the boiler, the latter serves as a steam jacket to prevent radiation and condensation, and renders the usual fittings of pipes, etc., unnecessary. A pulley, I, is fixed on one end to transmit power from the revolving screw, to any machine it is desired to drive.

Fig. 3 shows an end section of the boiler and cylinder, wherein the positions of the several parts are given; the screws are double or triple threaded, as required; a double thread is preferable on account of the greater area

and steam space left-available. Any desired number of screws may be used, and the proportions and pitch vary with the work to be done.

This engine was patented on Jan. 31, 1865, by Thomas Welham, of Baltimore, Md. For further particulars address Thomas Welham, No. 100 Broadway, New York.

German Wood Carving.

Some of the more delicate and elaborate specimens of carving-such as the groups for chimney-piece ornaments, honored by the protection of glass shades, are made of lime-tree or linden wood, by the peasants of Oberammergan, in the mountain parts of Bavaria. There were specimens of these kinds of work at our exhibitions which could not have been require to be paid for a half guinea Bavarian group, now before us-a Tyrolese mountaineer seated on a in his climbing shoes, a dead chamois at his feet, his wife leaning her hand lightly on his [shoulder, his thumb pointing over his shoulder to denote the quarter where he shot the chamois, his wooden bowl of in linden-wood. No English carver would dream of part. - Mechanics' Magazine. such a thing at such a price. -All the Year Round.

[Patents have recently been issued to parties for a material composed of wood, dust and other in-

the ordinary way, can be afforded for a small sum .-

The Shunt Gun Tried and Condemned.

Our predictions with regard to the ultimate destiny of the shunt system have been singularly and com-

heatings they haveundergone; annealing in a closed vessel makes sheet irons infinitely more supple than reheating in open air. Steel manufacturers should profit by this investigation to reheat in a closed vessel the sheet metals and all fine steels."

WELHAM'S STEAM OR GAS ENGINE.

length had that verdict pronounced upon it which we | EDS. from the first specified. The shunt gun has been definitively abandoned, and no large guns will for the future be rifled on that principle. The 64-pounders which have so very recently been finished and issued to the royal navy, have utterly failed on trial on board ship. The shot with the hollow head did not travel in a straight course, and were found to break up on impact, or even by a fall upon the ship's deck. The intention now is to make new shot, which are to be pounder have been found to burst prematurely in the gun, and in one gun, on board the "Excellent," the rifling was entirely destroyed from this cause. A second gun was also seriously damaged by a similar good wages for mediaval church-work. We should strongly recommended by the Ordnance Select Com- Then I made a print with the ti be curious to know what an English carver would mittee, for naval guns. The committee, however, states that it will be necessary to introduce sundry modifications, which it is now engaged in carrying rock, his rifle resting on his arm, the studded nails out, previously to applying the system to the naval guns, of 7, 8, and 9 in. bore, weighing 61, 8, and 121 tuns, respectively. The new gun, constructed according to the committee's modifications of the French rifling, is to be called the "Woolwich" gun. This, porridge held on his left knee, the easy fit and flow of then, is the present position of matters in this resgarments of both man and woman-all artistically peet, a position which speaks so plainly for itself as

Annealing in Closed Vessels.

At a recent meeting of the French Society of Civil ing, which would cost immense sums if executed in steels contain nitrogen, absorbed in the successive time.

An English Breechloader.

A new gun of this description has been recently patented by the Messrs. Powell & Son, of Birmingham. The principle upon which it is constructed and acts is as simple, and, at the same time, as complete as can be conceived. Between the hammers there is placed a lever with a thumb-bit on the end; on raising the bit the barrels are released and rise by their own weight; one of Eley's cartridge cases is inserted, and on shutting down the barrels they lock themselves. The mechan ism in the body of the gun is one piece with the lever: there are no small bolts or other delicate contrivances, doubtful in their operation; the whole is as solid and substantial as the hammer. The patent may be said to consist of a lever and a double spring in the action, applied through the top of the stock. The simplicity of construction of this implement will much diminish the chances of its getting out of order, and the invention has already attracted much attention.-London Times.

[This seems to be a pletely verified. After a protracted trial, it has at | sporting gun, as the Times speaks of barrels .-

Cabbage Plants in Three Days.

Mrs. Paull, of Mich., thus relates, in the Rural New Yorker, how she raised cabbage plants in three

"I took a box six inches deep and of sufficient size to hold all the plants I wanted. Then I selected stones of the size of a hen's egg, enough to cover the bottom of the box, and poured hot water on hollow in the rear. The shells from this naval 64- them, and at the same time I had earth (good, rich, garden mould,) in an old dripping pan, heating on the top of the stove, which I heat hot enough to kill all seeds of weeds and insects.

"When all was hot enough, I placed the stones on produced in England at thrice the price; our good premature explosion of the shell. The rifling of the box, and put the hot earth on top carvers are few, and their services are in request at French gun, which has a gaining twist, has been of the stones, and then filled the box with cold earth. I wanted each plant to stand, put two see is in a place for fear all might not come up, pressed them into the earth and cover them sufficiently deep. Then I took the green leaves of the pie-plant and laid all over them, and set the box in a chair in my cook room. I had some fire in the stove for about half a day, and the rest of the time there was none; and when they had been planted nineteen hours and a half, I raised the leaves and most all of them had come up, but the garments of both man and woman an artistically grouped and nicely cut, and looking clean and white to render more than superfluous any comment on our in the sun immediately, but kept them in the shade leaves were not yet expanded. I did not put them until the third day. I now have as nice, healthy looking plants as any one could ask for.

A MONSTER pig trough has been manufactured at gredients, which can be molded into any shape or Engineers, Mr. Julien, in the course of a discussion Dorchester, for a swinery in England. The trough form, however intricate, and retain the same when remarked:-"The most interesting result of M. is 500 feet long, and shaped like a horse-shoe. Two removed from the mold. In this way beautiful carv- Fremy's researches is that all commercial irons and thousand pigs will be able to feed out of it at one

Transporting Power by Electricity.

Messes, Editors:-Water power, it is well known, is often inconveniently situated for manufacturing purposes. Now, why could not such power be employed to drive one or more electro-magnetic machines placed in the immediate neighborhood, and the electricity thus induced carried over insulated conductors to almost any distance, and finally, where the power is required, into a proper apparatus for the decomposition or water or other liquid.

The gases generated might then be consumed in a gas engine-one perhaps, similar to Lewis's-either mixed or unmixed with other gases, as experiments would determine.

This is offered rather as a question than otherwise, but if, electro-magnetic machines are not too expensive, and have reached such perfection in construction, as to give nearly the power expended in driving them, in an electric current, then by the principle of the correlation of forces now recognized, we should have ultimately-allowing the usual loss-from onehalf to three-fourths of the original water-power. E. L.

Hackettstown, N. J., June 7, 1865.

[Very sensible, and all sound, if the conditions obtained, but they do not. Electro-magnetic machines do not give nearly the power expended in driving them, and probably never will, as it is impossible to convey, or even produce electricity without losing a large part of it. The nearer and more direct the application of power after it is generated the better, as every change in form or distinction involves loss; even the turning of a corner with a bevel gear is said to consume some four or five per cent in friction .-

A Microscope in a Spectacle Bow.

MESSRS. EDITORS:-Spectacles for persons who have lost the sight of one eye, and who are obliged to use glasses, may have in one bow a glass to suit the sight, and in the other a microscopic or magnifying glass. Such a glass would not make a bad appearance, and could be used as a microscope at any time by taking the glasses from the face and holding the lens in a proper position for the eye that has the sight. The use of a microscope is certainly a great pleasure; to look into a flower with one and see its beautiful colors and constructions would certainly repay all one costs. I think microscopes should be used by every one; the cost is so little for a pocket one, and it can be carried so handily. Their use would lead to the examination of every minute object that attracts attention, and also to close observation, by which alone good practical knowledge is obtained. It is by such means our greatest discoveries are first made. How often we pass over beds of mineral wealth without knowing anything of their value; but if in the babit of using a microscope their usefulness might be discovered. I would recommend all persons to use one; it will be found a great source of pleasure and would give an insight to the minute objects in nature which cannot be obtained in any other way. Its refining influence upon the mind cannot be too highly valued.

This is but a small matter, so I shall not claim a patent for it; but if it is original-which it is with me-and useful, I would like to have the credit.

world, and I further think that no one, has a right to live a life time without doing so.

A. PURVES.

Philadelphia, Pa., June 9, 1865.

Trial of Copper Cartridges.

Messes. Editors:-The question of the failure of the copper cartridges, which is being discussed in the Scientific American, is one of very great importance. I take the liberty to suggest the tollowing mode of ascertaining the facts, without walting for the winter months in which to test the question. My suggestion is, that a sufficient number of the

best cartridges be placed on ice, in an ice-chest and in a cold cellar. India-rubber cloth could be placed between the ice and the cartridges, if desired. It is well known that wetting these cartridges will not prevent their explosion in summer. The theory of Mr. Cleavland is that the cold weather of winter so condenses the air contained in the powder that the fulminating material is made damp and will not explode.

It seems to me that the above process would demonstrate the facts in the case. By keeping the cartridges on the ice for some time and then trying them in the cold temperature of the cellar, before the contents of the cartridge had any chance to grow warm or dry, the truth of Mr. Cleavland's theory could be A READER. ascertained.

Peterboro', N. Y., June 6, 1865.

Petroleum for Gas.

Messes. Editors:-Some weeks ago you made a statement in the Scientific American that "if petroleum could be used on gas works so as not to fill up the pipes," it would obviate the difficulty heretofore existing in using it for that purpose.

I have been putting up gas works for the past five years and have used either the crude oil or that with the naptha removed, and no stopping up of the pipes has occurred to my knowledge, and no more condensation than in coal gas. The light from one foot of gas from petroleum is equal in value for illumination to four feet of coal gas.

J. C. APPLETON.

Boston, Mass., June 5, 1865.

[There are only two ways in which petroleum can be prevented from condensing after evaporation-one is by burning the vapor while hot, and the other is to convert the substance into permanent gases by destructive distillation. The first method is easily effected in a kerosene lamp; the success of the second plan is so improbable that people will hardly believe that it has been done except upon the authority of a series of experiments conducted by some disinterested person who is sufficiently well known to command confidence.-EDS.

Latent Heat from Condensation.

MESSES. EDITORS:-My attention has been lately called to a scientific question, which has puzzled me greatly, and I therefore send it to you, hoping that either you or some one of your numerous readers will answer it through your columns. It is a wellknown fact that the condensation of steam in pipes sets free an immense amount of latent heat, while in the atmosphere, on a much larger scale, condensation goes on, but reversely, produces cold.

The question is, as the condensation of vapor in pipes produces so much heat, why, on the same principle, does not condensation in the atmosphere produce a correspondingly greater amount of heat?

T. E. K.

Richmond, Ind., June 4, 1865.

(What grounds has our correspondent for supposing that condensation in the atmosphere produces cold? That is the only thing that puzzle us in the matter.-EDS.

The San Francisco Clock.

MESSES. EDITORS:-Having read a couple of articles in your paper about the Montgomery-street clock, in San Francisco, I am induced to send you the following. The clock was called "the mysterious clock," and it kept the correct time of San Francisco. I saw it in 1857. There were three visible pieces-a piece of glass about twenty inches square and one-fourth I have written the above in consequence of your of an inch thick, and two hands. The minute hand asking for contributions. I think, with you, there was formed at the butt like the stock of a rifle. At short end it was about live-eighths of an inch wide, five-eighths of an inch thick, and an inch and a quarter long, and hollow. This box contained the works that drove the hands round a pin in the center of the glass. The works were not visible. passed, and these hooks hung on a round brass rod that ran across the window. Any one could see through the glass, and see there was no secret connection, only what might be in the butt end or the glass.

Albany, June 10, 1865.

Improvement in Microscopes Wanted.

MESSRS. EDITORS:-Is it not a surprising circumstance that the inventive genius of our time has never been turned to the improvement and increase of the mechanical contrivances for the grinding and polishing of lenses for the microscope? Even so early as the day of Descantes, mathematicians demonstrated how the main imperfections incident to the use of all lenses whose curves were sections of the sphere could be evaded by other curves, and yet no invention has ever been made by means of which such other curves could be obtained.

Such curves are the elipsoidal and hyperbolical, either of which, it is demonstrated to a certainty, will totally overcome all spherical aberration and curvature of the image, while by accomplishing this they free us from other difficulties and defects of compound lenses incident to our present grossly imperfect modes of overcoming the former.

The so called "opticians" of our day, with perhaps a single exception, are, my experience convinces me, totally destitute of the inventive qualities of their great prototype, Frauenhofer, and I have long thought it were worth while for some mechanic to turn his efforts in this direction. Success would no doubt yield him a standing in the scientific estimation not second to that of the great and original worker I have named-would yield him a position any man might be justified in coveting.

RUFUS KING BROWNE.

No. 12 East Sixteenth street.

[We know of no department in any of the arts to which more thought, intelligence and inventive genius has been directed than that of grinding lenses for microscopes. While spherical curves are easily obtained by the simple rotation of circles, the difficulty of forming other curves with the perfection requisite in a lens, our correspondent would perhaps more fully appreciate after he had made the attempt. An important improvement in grinding lenses for microscopes has recently been made in this city by Mr. Wales, a young Englishman. His objectives are pronounced by our most eminent microscopists decidedly superior to any made abroad. Indeed, some careful observers say that the definition obtained by Mr. Wales's combination of 4 ths focus superior to that of Smith & Beck's 1th. Our correspondent can see some of these lenses by calling at the store of S. Hammond, importer and repairer of fine watches, No. 41 William street.-Ens.

The Perpetual Motion Clock.

MESSRS. EDITORS:-Your New Zealand correspond ent is mistaken in assuming the so-called "perpetual motion clock" described by him, to be "new to all the world." About fifteen years ago, my father, John M. Patton, of Milton, Northumberland County, Pa., invented and had constructed a clock, operating upon exactly the same principle, viz., the expansion and contraction of the atmosphere from natural changes in its temperature. It consisted in the main of a cylindrical reservoir, in which was inverted another open-mouthed cylinder of smaller diameter. Olive oil was poured in the outer cylinder to form a packing between the two. Suitable guides were attached to keep the interior reservoir concentric to the outer one. Upon the head of the center cylinder a double rack was erected, which drove clock gear of the lepine style. This wound a spring, in which was stored power to continuously drive the timecomputing gear. This clock ran about two years; it then stopped, from mechanical imperfections. Portions of it are now in my possession.

WILLIAM P. PATION.

Harrisburg. Pa., June 12, 1865.

A serious explosion of petroleum took place recently at the works of Messrs. Charles Price and Co., at Frith, Eng. A workman held a naked lamp over some petroleum oil, in order that he might note the There were two holes in the top of the glass, near index which marked the rise of the liquid, before putthe edge, through which two common hooks were ting the cover over the retort. An explosion was the consequence, and three men were seriously injured about the head and face thereby.

A CAR has been contrived for the transportion of minute hand. The figures were in gilt, and on the butter. It has an inside lining of inch board, with a space of three inches left, which is filled with saw-

POLYTECHNIC ASSOCIATION OF THE AMERICAN INSTITUTE.

The Association held its regular weekly meeting at its room at the Cooper Institute, on Thursday evening June 8, 1865, the President, S. D. Tillman, Esq., in the chair.

IMPROVED GUN LOCK.

gun lock in which the main spring was placed oirectly under the cock upon the outside of the lock.

Mr. Blanchard remarked that the improvement made an extremely simple lock, and obviated the the grounds excepting Dr. Trimble, who, for scientific necessity of cutting away the stock to as great an examination, has been allowed to shoot two or three extent as in other locks.

IMPROVED SADDLE TREE.

Mr. W. H. Disbrow, of this city, presented an improved saddle tree made of leather and strengthened cherry trees in the grounds, and when the cherries by straps of steel. The advantage is in the elastic- first began to turn red the trees were swarming with ity by which the saddle adapts itself to the form of birds, especially the grakle, or crow blackbird. But the horse's back; it is also several pounds lighter they soon became cloyed with the fruit, and by the than the wooden tree. Mr. Disbrow said that he had used it extensively in his riding school, and that it never chafes a horse's back.

SLAUGHTER HOUSES NOT INJURIOUS TO HEALTH.

Col. Devoe read a long paper on slaughter houses, giving a history of their establishment in Europe and in this country, citing the ordinances in relation to them in this city from the first one in 1636. A large portion of the paper was devoted to an examination of the question whether slaughter houses are injurious to health, and the argument in the negative was sustained by a very formidable array of facts. It was shown that some wards in this city have as low a rate of mortality as the country districts, only 17 in the 1,000 annually, while in other wards the annual mortality is over 60 in the 1,000, and that the healthiest wards are those in which there are the largest number of slaughter houses. Statistics were also produced of the deaths resulting from yellow fever and cholera during the several ravages of those epidemics, showing a remarkable exemption from the disease among butchers and those living in the vicinity of slaughter houses. The famous report of the French commission, was, of course, cited, containing the statement that not only butchers, but the workers in animal offal in the city of Paris have quite as low a rate of mortality as any other portion of the

the extreme unhealthfulness of our tenement houses. In one of these containing 329 persons the average sickness all the time was 1 in 3, and the average annual mortality 105 in the 1000. All the sickly wards are those in which the inhabitants are crowded, while the healthy ones are invariably those inhabited by the | muriatic acid, which converts the soda into muriate more wealthy portions of the people, among whom there is no crowding.

BALANCED SLIDE VALVE.

Mr. Charles E. Emery, an engineer in the U. S. Navy, exhibited a balanced slide valve, which seems to be one of the most promising that has yet been invented. A hole is cut in the back of the steam chest directly over the valve, and is covered by a plate which is connected with the valve by a rigid nothing in his ale but hops, malt and salt. These are the plants and immediately fly off. I passed through stem. It will be seen that the valve and plate both the only things required besides water for making wear in the same direction, so there is no tendency to produce a leak.

FAIR OF THE AMERICAN INSTITUTE.

meeting before the summer recess, he would an- of Indian berry, or cocculus indicus, one of the most nounce that the managers of the American Institute deleterious and poisonous drugs known to the materia had decided to hold a fair in the fall; the grounds of Palace Garden, corner of 14th street and 6th Avenue, and prostrating than that resulting from opium. I terfly, fly's eye, of a louse, a spider's foot, and simi-14th of September. Preparations will be made for some than a man who has made himself drunk on running machinery, and an unusual display of novel beer rendered bitter by the infusion of cocculus indimachines is anticipated.

ADJOURNMENT FOR THE SUMMER.

The Association then adjourned to the 21st of September, when the novelties of the fair will be the regular subject for discussion.

Esparto, or Spanish grass, is mow extensively used in papermaking. Great quantities of this grass are brought into the Tyne by ships from Spain, and stored in the Tyne Dock of the North Eastern Railway Company, whence it is despatched by rail to all stated that one of his neighbors at Newark, N. J., the papermaking districts in the kingdom.

FARMERS' CLUB.

The Farmers' Club of the American Institute held its regular weekly meeting at its Room at the Cooper Institute on Tuesday afternoon, June 13th, the President, N. C. Ely, Esq., in the chair.

BIRDS AND INSECTS.

Dr. Trimble said that he had recently visited the grounds of the Pennsylvania Hospital for the Insane, Mr. W. H, Baker, of Marathon, N. Y., exhibited a at Philadelphia, where the good effects of protecting birds are very strikingly exhibited. About fifty acres are inclosed by a high stone wall, and for twenty-five years no one has been allowed to discharge a gun on birds not to be found elsewhere. In consequence of this protection, all the birds that will live there are found in the inclosure in great numbers. There are time the cherries were ripe had almost entirely ceased to eat them. Dr. Trimble visited the grounds in company with a number of naturalists, and they made a search for worms, but none were to be found; the birds had exterminated them. Two crow blackbirds were shot and their crops examined; not a fragment of cherry was found in either, but the crops were filled with water beetles from the neighboring marshes showing that the birds had learned to come to this inclosure for protection, even when they were obliged to seek their food elsewhere.

> PRESERVING THE VIRTUE OF HOPS. Solon Robinson called on Prof. Percy to explain

his mode of preserving the aroma of hops.

Dr. Percy:-It is well known that hops retain their virtue only about six months after they are gathered, when they begin rapidly to deteriorate, and at the end of two years they are nearly worthless. This is a very serious evil, as the crop tails in some seasons, and great efforts have been made to devise some plan to obviate it. Some twenty years ago my attention was called to the subject, and I set about its investigation. The first step was to ascertain the cause of the deterioration, and this I found to be oxidation, the general process of the decay of organic substances. The lupulin of the hop consists of an essential oil and a resinoid substance, which, by oxidation, becomes insoluble in water. It was known that this One of the most interesting facts brought out was could be extracted by alcohol or ether, but these were too expensive, and they spoiled the ale. In 1838 I made the discovery that the extract might be made by alkalies. I accordingly dissolve the lupulin in soda, and then condense the solution in a vacuum pan without access of atmospheric air. I then add of soda, or table salt. The extract thus made I preserve by means of glucose, or grape sugar. Grape sugar is one of the most general preservatives against oxidation that we have. Mr. Miles, proprietor of the Croton Brewery, in this city, has made several barrels of ale from hops preserved by my process, and it is a delicious beverage, though not as bitter as beer made from fresh hops. Mr. Miles is a man who puts a complete success; the bugs would light down on good ale or beer, and no honest brewer will add any others. I am sorry to say that nearly all English ales-and being an Englishman, I may be permitted The President remarked that as this was the last to make the remark-contain in addition a quantity medica. The sleep produced by it is more lethargic tographs of a fly's foot, bee's sting, trunk of a butwill be opened on the know of nothing more stupid, degrading and loath- lar things, as they appear when greatly magnified by cus. I have tasted lager beer in this city which was manifestly adulterated with this stupefying poison, and it would be an invaluable service to the community if the honest brewers who never employ it could be universally made known.

[Would it not be better to make notorious those who do use it ?- EDS.

ONE CHERRY TREE YIELDING \$100 A YEAR.

Dr. Trimble exhibited some cherries of the Bigareau Doula variety, a large and very early kind, and had sold \$100 worth from a single tree this season.

THE BEST STRAWBERRY.

Mr. Carpenter presented a plate of strawberries of he Horticulturist variety, which he pronounced the best variety of strawberry yet produced. He said that he has now in cultivation about seventy varieties, and has probably tried as many more which he has abandoned. He would recommend for cultivation not more than six varieties. The Wilson we still hold on upon, as well as the Triomphe de Gand, though they will probably both be abandoned. The Buffalo, Russell's Prohfic, Downer's Prolific, and French Seedling are our best varieties next to the Horticulturist. Downer's prolific is excellent for home use though too soft for market, and the French Seedling is the best early variety.

MISCELLANEOUS SUMMARY.

At the first conversazione of the Bradford Philosophical Society, which took place recently, there was a good display of microscopes, stereoscopes, mechanical models, and other objects of interest; but attention was chiefly directed to a steam carriage, constructed by Mr. C. H. Holt, engineer, of Huddersfield. This vehicle will hold eight persons, exclusive of stoker and driver, and, being provided with apparatus for consuming the smoke and condensing the steam, has no unslightly funnel. It is estimated that it will travel over an ordinary highway at a speed of from ten to twelve miles an hour, and that I cwt. of coke, with 50 gallons of water, will supply sufficient motive power for a journey of 20 miles.

A New Green Paint -A mode of obtaining a green pigment from manganate of baryta has been patented by Mr. Ludwig Schad, of Cassell, Germany he proposes to call the pigment Cassell green. He heats a mixture of oxides or salts of manganese and nitrate of barium, sulphate of oarium or China-clay being added to prevent fusion. He uses (say) oxide of manganese, 14 parts; nitrate of barium, 80 parts; sulphate of barium, 6 parts; or nitrate of manganese, 24 parts; nitrate of barium, 46 parts; sulphate of barium, 30 parts. The mixtures are heated until they assume a uniform green color. The product is ground with water to the required fineness. The pigment may be used for staining papers, as an oil color, for calico printing, etc.

THE Academy of Sciences has received from M. Seguier an account of a cartridge he has invented, which he considers to have many recommendations. He puts into a metallic case a certain amount of guncotton, and on this he places a perforated wad. Upon this wad he puts the coarse-grained powder, and now the projectile, which rests upon the powder. By a peculiar contrivance, something like that of the Prussian needle gun, the powder is first ignited, and then the gun-cotton.

KEROSENE FOR SQUASH BUGS .- A writer in an exchange says:-"I took some of the oil and with a feather passed it lightly over and under the plants, sufficiently to diffuse the odor among them; then took up a position, at a suitable distance, to observe the result, and I soon discovered that the operation was all my vines twice in two days with the feather, giving the hills a general odor, and the bugs troubled me no more."

WONDERS OF NATURE REVEALED .- Mr. W. J. Tait, corner of Greenwich and Cortland streets, has shown us a series of photographs of natural objects which are very interesting and instructive. They are phoan achromatic microscope. Much information can be obtained by examining these cards; they are also a suitable ornament for the center table.

PAPER PIPE.-The Portage (Lake Superior) Mining Gazette, says that paper pipes, six inches in diameter, are used in the Pewabic copper mine to convey air from one portion of the mine to the other. The pipe is six inches inside diameter, the paper pipes are quite strong and can be joined perfectly airtight by a strip of canvass and a coating of tar.

On the site of Sodom and Gomerrah, English enterprise has established a factory for the extracting of bromides from the waters.

Improved Hay Rake.

Farmers appreciate the value of the horse rake, and there are but sew places in the country where they are not in use. Many claimants for public favor are variety which has some excellent points.

as strong, and this object is attained in this rake. power is obtained by the explosion of mixed gases. By the method of constructing the teeth they are much more durable than the solid ones, being stronger takes fire easily and rapidly, and which can be profor a given amount of wood, and also lighter.

New Gas for Motive Engines.

The Motor Lenoir has achieved considerable success, but its application is limited to the supply and cost of the gas required to work it; and it is said in the market, and we herewith illustrate another that an engineer of Lyons, M. Million, has hit upon an expedient which is likely to have a great effect It is necessary that a rake should be light as well in extending the use of that or other motors in which

The problem is to find a gaseous mixture which duced in almost any place at a low cost. This de-

As steam will be required to produce the gaseous mixture the new motor will come into direct competition with the steam engine, which the motor Lenoir does not .- Journal of the Society of Arts.

"All is not gold that glitters," says the proverb; neither does all cream that goes into the churn come out good butter-indeed making a prime article of this kind is such an achievement that the same of the maker spreads far and wide. In order to make good butter it is necessary to take great pains to preserve the cream from getting sour and prevent it from being tainted by bad smells. It is also necessary to churn it quickly. The old fashioned dasher churn is still preferred by a great many persons, notwithstanding the variety of new ones in the market, and the illustration here published shows an improvement on it.

The old features are all preserved, and a new motion is given the dasher, which adds very much to its efficiency. This motion is simply a rotary one, so that as the dasher ascends and descends it also revolves right and left, causing a thorough agitation of the contents, and causing the butter to come in a short time. This change is merely in having an iron rod instead of a wooden one, and twisting the rod so that as it is moved up and down the dasher revolves-the orifice the rod moves through is a mortice, not a round hole. The rod does not turn in the hands of the operator, but in the handle; this is fitted with a

This dasher can be applied to any churn of that ing. The frame is brought back to its position by a a Ruhmkorf coil introduced at the upper end, a class now in use; it is not necessary therefore to put blue flame appeared, and slowly traversed the tube aside the old one, as the dasher rod is the invention,

This churn dasher was patented through the tion of the teeth strength and lightness are secured. bustion, and caused the flame to descend with greater Scientific American Patent Company by John B. rapidity, This was illustrated by a tube more than | Lindsay, April 25, 1865; for further information ad-

> PRESENCE OF MIND.-Two young men on board the steamer St. John, from New York for Albany, set a good example by their presence of mind and cool determination the other night. A kerosene lamp broke in a closet, and the burning fluid covered the floor. Intense alarm, of course, ensued, but the young fel lows stood at the door, and refused to allow even the officers of the boat to enter until the kerosene was burned out. The theory was that if the door was opened and water poured in the flames would not be extinguished, but would be floated to other com bustible material at the risk of the destruction of

CRELLIN'S HAY RAKE.

The machine is constructed as follows:

These are favorable features which will no doubt give in fig. 2; the ends are armed with iron.

This rake was patented through the Scientific American Patent Agency, May 16, 1865, by J. Crellin; for rights in Massachusetts, Connecticut, New York, Indiana, Michigan, Minnesota, Iowa, and Kansas, address the inventor at Marshalltown, Iowa. For Maine, New Hampshire, Vermont, Pennsylvania, Ohio, Wisconsin, Illinois, Missouri, address Z. Dixon, Bristol, Illinois.

THE English system of announcing storms by telegraph has been adopted in Prussia. Professor Dove, the famous meteorologist, will send the result of his observations daily to all the principal ports.

sideratum is believed to have been discovered in the The rake head, A, is carried in bearings as usual, in gases which are given out when steam is made to which it turns easily, and has at each extremity a pass over coke in a state of incandescence, or, in projecting support, B, which keeps the weight off the other words, in a mixture composed of oxide of carteeth, and guards them from injury against strain bon and carburetted hydrogen. The subject has been sidewise. The device for discharging the load is introduced in a lecture at the Sorbonne, and before also novel. It consists fof a frame, C, attached to the Scientific Association of Paris, by MM. Schlæsing the thills, bearing on the two middle teeth; this and Demondesir, the engineers of the tobacco manuframe works on a hinge and is connected to a second- factory, and M. Troost, and has attracted consideraary frame, D, by a cord; when this secondary frame | ble attention. In the experiments performed it was is moved toward the rake the teeth are liberated in a shown that when, oxide of carbon alone was intro- nut and washer so as to allow it to work easily. manner easily understood by referring to the engrav- duced into a vertical tube, and fired by a spark from By the method of drawing this rake a large quan- until it reached the bottom; and that the introduction and not the churn itself. tity of hay can be taken upon it, and in the constructor of a small quantity of hydrogen accelerated the comthis rake popularity. A section of the tooth is shown 18ft. long. Another experiment showed that, when dress him at Davenport, Iowa. the explosion was caused in a series of vertical tubes alternately connected together above and below, the flame, when ascending, traversed the tubes more quickly than when descending. The engineers mentioned are now carrying on a series of experiments to ascertain the most economical mixture of these gases with atmosphere air for motive purpose, and success is considered to be almost certain. It must not be forgotten, however, that, although the new system may supply a cheaper and possibly more effective motive power, it will have one drawback that does not attach to the Lenoir motor, which can be used in workshops and other places where it would be impossible or inconvenient to introduce a furnace.

Scientific American.

MUNN & COMPANY, Editors & Proprietors.

PUBLISHED WEEKLY AT NO. 37 PARK ROW (PARK BUILDING), NEW YORK,

O. D. MUNN, S. H. WALES, A. E. BEACH.

advertisements for the Scientific American. Orders sentor m will be promptly attended to.

VOL. XII. NO. 26... | NEW SERIES.] Twentieth Year.

NEW YORK, SATURDAY, JUNE 24, 1865.

Contents:

(Illustrations are indicated by an asterisk.)

ers.
Plowing in England
Shape of Chimney Tops
heree on the Lakes
g the Telegraph Cable.

caph Cable Completed
al Vegetation
tion in Terms.

It American Patents.

Recents

ham's Rotary Counter ion of the Bessemer

man Wood Carving Shunt Gan Tried and Con-

rdan's Attachment to Cabbage Plants in Three Days 403 Microscope in a Spectacle Bow Trial of Copper Cartridges... Petroleum for Gas Latent Heat from Condensa-01 tion... 02 The San Francisco Clock.... 01 Improvement in Microscopes

ovement in deed over the control of the ochnic Association of the merican Institute ellaneous Summary..... lay Rake or Motive Engines Churn Dasher... (Mind

400 File Most Plausible Plan for 408 Leather Belts 403 Patent Claims 408, 409, 410

A WORD ABOUT OURSELVES.

Probably no other journal in the United States has received more "honorable mention" from the press of the country than the Scientific Americanwhile it is equally true that this is the only truly successful and reliable journal of the industrial arts and sciences ever undertaken here. We do not often transfer to our columns the complimentary notices which are so freely bestowed upon this journal, but we cannot forbear to insert the following which we clip from the Buffalo Advocate :-

"Of late we have received papers which appeared to us to have been set affoat to rival the Scientific AMERICAN, published in New York, by Messrs. Munn and Co.npany. We have no disposition to discourage any lawful enterprise, especially in the making of papers, but it does appear to us to be as weak, as it is foolish, for any one to attempt or even think of bringing out a paper that will at all compare with the one noticed above. The proprietors of the AMERICAN are working, enterprising men, and are in possession of facilities for making a first class paper which others could not attain in a score of years. Besides, the polish, beauty, and exquisite taste which marks the appearance of each successive issue of the paper, must be attended with a great outlay, which no new enterprise could afford to expend. To our citizens, and to all, we recommend the Scientific American."

So far as other journals are concerned we can only remark with Uncle Toby, in Tristam Shandy, "the world is wide enough for me and thee." Our business is to pursue the even tenor of our way. As in the past, so in the future, we shall devote all our energies to the interests of our thousands of generous readers and patrons the world over. The Scien-TIFIC AMERICAN CIRCUlates in every country of globe, and is generally acknowledged to be the best directs; and cannon, tents, recruiting booths, and popular expositer of the arts and sciences now ex-

The present volume closes with this number. Some of our triends' subscriptions close with it, and as our rule is not to thrust the paper upon those who may not desire to take it, we invariably discontinue sending it whenever the subscription expires. We not only hope that all our subscribers will promptly renew, but we trust also that they will be able to induce some of their neighbors to join with them.

this journal is unquestionably the most complete and extensive in the world. For nearly twenty years it or Air Ship, invented and constructed by Solomon

has been our privilege to be associated with mechanics, inventors, and manufacturers as counsel for them in the prosecution of claims before the Patent Office.

From a very modest beginning we have gradually enlarged our operations, until they have come to include almost one half the entire business transacted with the Patent Office. Ours is the only patent agency in existence that has a co-operating branch office in Washington through which preliminary examinations are made, and personal supervision given to all such cases as may require it.

In our Legal Department attention is given to all matters of litigation affecting the rights of patentees -such as bringing suits for intringement, contesting interferences, prosecuting extensions, preparing all legal documents and papers-indeed there is no branch of the patent business which does not receive our most careful attention. Popular opinion as well as attested facts place the Scientific American Patent Agency Offices as the first in the world.

WHERE TO LOOK FOR PETROLEUM.

A man is sinking a well for petroleum about two miles west of Mount Vernon, in Westchester County, near this city, and has penetrated some 80 feet below the surface. The rocks in this locality are of the taconic formation, which is many thousand feet below any of the oil-bearing rocks. There is no spot on the face of the earth where a well could be sunk with less chance of finding petroleum, while there are thousands of square miles of the oil-bearing formations that have not yet been explored.

We have now in the hands of the engraver a diagram illustrating the position of the rocks in the great basin where petroleum is found, and this will be accompanied by Dr. Stevens's description of the rocks, of their position and location, and of the manner in which they were deposited, all so plain that it will be understood by any one who knows nothing of geology. Indeed, the article will give a better idea of the general position and formation of the rocks which constitute the earth's crust than can be found elsewhere in so few words; and it will indicate clearly the localities in which wells may be sunk with any hope of success. The diagram and description will appear in our next issue probably; if not, the week after.

THE WAR ENDED.

Few people realize the inestimable blessings they possess in the close of the war. They miss the accustomed accounts of engagements, and the sight of soldiers in the streets is becoming rare. Flags no longer wave from every house top. The bands that paraded and the regiments that marched away to the front, these are all among the scenes that were. There are no more dreadful battle-fields, no sewing-circles for the soldiers, and few boxes to be forwarded. The foundries have done their work; shot and shell are no longer turned out by the tun, but, figuratively speaking, the iron for them is cast into plowshares, and the sword has been beaten into the pruning-hook. The shipyards are busy on their contracts for merchants, the armories are disbanding their forces, the makers of ordnance are unemployed, and the whole tenor and tone of our daily lives is as suddenly tranformed from one of eager and vigilant activity for our national existence as it we had dropped from one sphere to another.

Perhaps the most striking transformation visible in the external appearance of this city is that of the Park, opposite our office. But a few months ago it conditions the belt works under is very certain from full of troops, armed and equipped as the law the data furnished by Mr. Coo bands were too common to attract more than a passing glance. These have all vanished, and where the armed men congregated grass is growing vigorously. Welcome, peace! And happy America that has lived through the schisms and schemes that sought to destroy her.

THE MOST PLAUSIBLE PLAN FOR NAVIGATING BALLOONS.

We have before us a large lithograph print, neatly THE PATENT AGENCY DEPARTMENT connected with framed and glazed, with this note at the bottom: "THE AEREON,

Andrews, M. D., of Perth Amboy, New Jersey, in which he sailed against the wind at the rate of 25 miles an hour; not daring to risk a greater speed until the strength of the material, to meet resistance, was proved. The engraving shows the Aereon as she appeared on the 4th of September, 1863, in his fifth and last entertainment, when she traveled 30 miles in 141 minutes or at the rate of 124 miles per hour, in a spiral circle upwards, when she was lost to view in the clouds. Though hundreds of persons were present when she started, and thousands witnessed the flight, yet no one discovered the means by which she was propelled. She was afterwards destroyed by order of the inventor. The cylinders were made of varnished linen, each one 80 feet long and 13 feet diameter. They contain 26,000 feet of hydrogen gas. She carried up the aeronaut weighing 172 lbs., and 256 lbs. of ballast. Car 12 feet long. What is the motive power, and by what means is the power applied?"

The engravings represent three cigar-shaped balloons lashed together side by side, with a rudder at one end, and the car containing the aeronaut suspended below. In the ascending views the balloon is inclined with the forward end upward, and in the descending views with the forward end downward. This makes the solution of the puzzle sufficiently ob-

It is well known that the vertical position of balloons is under control; to make them rise it is only necessary to throw out ballast, and to make them descend to permit an escape of gas. Mr. Andrews makes a broad, flat balloon, and having pointed it in the direction in which he wishes to go, stands while it is ascending in the rear end of his car so as to incline the forward end of the balloon upward, when the resistance of the air against the upper side of the balloon causes it to glide forward as it rises. Having risen as high as possible, the aeronaut discharges a quantity of gas, causing the balloon to descend, and at the same time steps to the forward end of the car, thus tipping the balloon with the forward end downward, when the pressure of the air against the lower side during its descent causes the balloon to shoot forward in the same direction as during the ascent. The balloon thus being driven by the force of gravity through the air, it will, of course, be obedient to its rudder, and its course may be governed at will.

This is the only even plausible plan that has ever been suggested for navigating balloons, and it is certainly very ingenious. In regard to the statement, however, that the Aereon sailed against the wind at the rate of 25 miles an hour, it would be satisfactory to know by whom and by what methods the velocity was measured, and what was the force of the wind against which it sailed.

LEATHER BELTS.

Since publishing an article on leather bands for driving machines we have been in receipt of many letters; one of them we shall publish next week.

We are obliged for this letter and for others on this subject received but not published. The difficulty alluded to in our article of estimating exactly what power is transmitted by a belt is not solved by our correspondent's communication, although he gives so much that is interesting, and is a thinking man. He assumes that the belt (rule 1st,) gives or transmits 221 H P, but is this an inferences or the result of actual experiment, or practice, which is better? A belt transmitting 221 H P will have to raise 742,-500 lbs. at the rate of one foot high in a minute, and that the force exerted is materially changed by the

A 12-inch belt running on a 51-foot pulley at 45 revolutions per minute would be very slack not to transmit more than 12-horse power. We know of an 11-inch belt that daily transmits, from a 4-foot pulley running 60 per minute, the power exerted by an 11inch cylinder and 30-inch stroke running 45 revolutions per minute with 50 pounds of steam. In this comparison the advantage is with the 54-foot pulley, for the speed of the belt over it, in lineal feet, is 780, while the smaller pulley runs 753 feet per minute. The power thus carried off by this belt (vertical) without an idler pulley is, by the rule for estimating the powers of steam engines, 29-horse power.

Let it be understood that we do not criticise our

correspondent's letter in a spirit of fault-finding, but with a view to further information in the case.

On page 84, Vol. III., of the Scientific American, we published some interesting rules and facts relating to the transmission of power by belts, and the opinion is there expressed that but little reliance can be placed on rules in general, for so much depends on the elasticity, length of belt, and velocity of the same, that arbitrary formulæ do not always suit the case. We are not of this opinion now, and see no reason why, when the length and width of the belt is given, we should not have an approximately correct result, with the ordinary tension, that is a stretching that that will neither tear out the lacing, or the holes, or heat the shaft, but be sufficient to cause a moderate and proper adhesion. Of course, in this case, common sense must be used to determine what reasonable tension means.

As our correspondent remarks, the experiments with the india-rubber and the leather belts proved nothing. Mere adhesion of two surfaces, or one slipping under a less load than the other, with the same width, is no criterion, for by applying foreign substances, such as rosin or oil and rosin, the adhesion can be greatly increased, and a small belt made for the time to draw as much as one of greater sectional

We shall be glad to receive further communications on this subject, and thank Mr. Cooper for his promptness in responding to our request.

ISSUED FROM THE UNITED STATES PATENT-OFFICE FOR THE WEEK ENDING JUNE 13, 1865. Reported Officially for the Scientific American.

Pamphlets containing the Patent Laws and full particulars of the mode of applying for Letters Patent, specifying size of model required and much other in formation useful to inventors, may be had gratis by addressing MUNN & CO., Publishers of the Scientific AMERICAN, New York.

48,144 .- Air-tight Stove .- Joshua G. Allen, Philadel-

phia, Pa.:
I claim inclosing the air-tight chamber forming the base of a sheetron stove in a case of cast iron, substantially in the manner and for
the purpose set forth.

48,145.-Grain Drill.-James B. Amos, Lower Chance-

ford, Pa.:

I claim, First, Connecting the forward wheels, when mounted upon one and the same axle, to the truck or frame by means of a central vertical pin, in combination with side links attached to either side of the frame or truck and to the axle next to the wheels, so as to diverge, inclining forward and downward, from the truck to the axle, substantially in the manner and for the purpose

48,146.—Caster for Furniture.—Marshall L. Babb, Cape Elizabeth, Me.: I claim as my improvement the slotted and bulbons-headed spindle, e. c, in combination with the cylinder, b.

48,147.—Stuffing Box for Valve Spindles.—Thomas and John Barber, Brooklyn, N. Y.:

We claim the combination with the annular valve, E, socket, B, and valve stem, D of the gland, A, and collar, A', when constructed and arranged to operate in the manner and for the purposes herein set forth.

[This invention consists in an improvement in stuffing boxes for spindles of valves, by which one is enabled to dispense with the system of packing stuffing boxes with hemp or similar stuffing material, and yet make the joint tight.]

48,148.—Paper Collar.—William S. Bell, Boston, Mass.: I claim, First, Doubling the thickness of the band, and connecting the folds together, substantially in the manner set forth. Second, Folding the collar upon the line, b, by making the edge, a, the guide in such operation.

the guide in such operation.

48,149.—Machine for Coring, Slicing, and Stringing Apples.—Noah Bennett, Sherman, N. Y.:

I claim the combination and arrangement of the piston or follower raised by a spring, and composed of a driving head, g, core-depressing projection, b, and centering point, i, with the cutting, coring, and stringing device, all substantially as herein specified.

48,150.—Corn Planter.—William Blessing, Jeffersonville, Ohio:

Olifo:
I claim, First, The tooth, C D, and seed box, F f, secured to each other and to the bram by the operation of a single screw, substantially as set forth.

Second, The obliquely-floored seed box, F, connected to the tooth by the oblique boss, f, and having its side reciprocated in the plane of the trigger, substantially as set forth.

48,151. Balling Press.—Charles B. Brooks, Auburn, Me.: I claim the wheel; G, on the upper end of the screw, E, in combination with the friction wheels, H H, when the latter are placed in an adjustable leaded frame, and rotated in reverse directions from a chart, K, driven siternately by a straight and cross bolt, and all arranged substantially as and for the purpose set fortb.

caling purposes, and it consists in a novel manner of operating or applying power to the screw through the medium of friction, whereby several advantages are attained over the mode of applying power.]

48,152.—Show Case for Cigars and Tobacco.—Charles E. Brown, Owego, N. Y.:
I claim a show case for cigars and tobacco, constructed substantially as herein shown and described.

[This invention consists in arranging a series of compartments in a circular or polygonal case, having a glass top or cover, in such manner that each compartment may be brought underneath a door In the top or covering thereof, for the purpose of enabling the party purchasing to select the particular priced or kind of cigar he desires, the said price or name being denoted on a plate conveniently ar-ranged in the center of the case, and revolving with the compartments. It also consists in arranging the door in the top in such a manner as to prevent its being opened by any person except the render of the articles in the case.]

48,153.—Method of Attaching Loops to Buckles, Etc.—
L. C. Chase, Boston, Mass.:

First, I claim confining buckles, loops and rings to straps by means of a clasp or band, substantially as and for the objects specified.

second, Constructing the clasp or band in one piece with the loop, substantially as and for the purpose described.

Third, The prong, f. in combination with the clasp, substantially as set forth and for the purpose described.

Fourth, Constructing one side of the clasp opposite the prong f, in two parts, substantially as and for the purpose described.

48,154.—Shuttle for Looms.—John H. Coburn, Lowell,

Mass.:

I claim securing the tip of the shuttle by means of its screw-readed shank, b, which screws through the transverse, plug, c, ubstantially as above described.

[This invention consists in a method of securing the tips of shuttles so that they may sustain the violent blows and shocks given to them in weaving without becoming loose and falling out, and whereby also the shuttle will be strengthened and prevented from being split.

48,155.—Improvement for Distributing Fertilizers to Growing Plants.—Daniel C. Colby, Claremont, N.H.: I clam the combination of the inclined button, B. the stay, g, the temporary partition, J. and the standard, E, with the box, A, as and for the purposes set forth

48,156.—Flour Sifter.—Daniel C. Colby, Claremont, N.H.:

48,157.—Machine for Making Clinch Rings.—J. A. Cole-man, Providence, L. I.: I claim the method of forming "clinch rings," or other similar articles, by the use of a pin, in combination with a die, both acting in the manner substantially as and for the purpose set forth.

48,158.—Low Water Detector.—John Cosfeldt, Philadel-phia, Pa.:

First, I claim the tube, A, or its equivalent, forming a passage between the interior of the boller and the pipe, B, through which the end of the float lever, H, or equivalent device connected to and operating the valve, E, may project into the boiler, substantially as specified.

ied.

Second, The alarm whistle, G, and the valve, E, gage cock, C, blowfit cock, Y, and float lever, H, combined with the four-way pipe, B,
substantially as set forth, for the purpose described.

substantially as set forth, for the purpose described.

48,159.—Wool Press.—John Crane, Glover, Vt.:

1 claim as my invention the machine or combination substantially as described, the same consisting of the hinged boards, D D, and their supporting frame, and the grooved slides, F F, and standards, E E, and their operative mechanism as described.

I also claim the above-described arrangement of the hinged boards, their supporting frame, and the grooved slides, F F, and standards, and their operating mechanism.

I also claim the combination of the sliders, G G, with the grooved standards, E E, and slides, F F, when combined with the hinged boards, D D, and the mechanism for operating the slides, F F, as specified.

48,160.-Mode for Making Corundum Wheels.-Elijah

H. Danforth, Jamestown, N. Y.:

I claim their (the base, A, on the curb, B, etc.) combination as set forth and described, and represented in Fig. 1, a perspective view. 48,161 .- Scroll Sawing Machine .- William H. Doane

48,161.—Scroll Sawing Machine.—William H. Doane, Cincinnati, Ohio:

First, I ciaim connecting the pitman, D, to the upper end of a scroll saw stock by means of the conical bearing, b, on the end o the slide, a', and a bolt, c, passing through the stock, substantially in the manner and for the purpose described.

Second, The combined conical wrist pin and slide, a b, formed on or attached to the saw s ock, substantially as described.

Third, The hollow cylindrical stock, E, in combination with a combined wrist, pin and slide, which works in guides at the back of the stock, substantially as and for the purpose described.

Fourth, The arrangement of the back and side guides, n n', on a plate, k, attached to the table, b, substantially as described.

48,162.—Tobacco Pipe.—F. Doellbor, Philadelphia. Pa.: 1 claim the elbow, D. provided with a socket, d, and made to fit in the lateral socket, b, of the fluid receptacle of a smoking pipe, substantially as and for the purpose set forth.

(An engraving and description of this invention will be published in the SCIENTIFIC AMERICAN in a few weeks.]

48,163.—Whifiletree.—James Elder, Carthage, 111.:
I claim the combination of the adjustable lever, G, lever, J, and rock, K, with the treble tree, D, for equalizing the draft upon the horses of the team, substantially as described.

48,164.—Sheet-metal Spoon.—James Fallows, Philadel-

48,165.—Pump.—A. D. Foster, Jordan, N. Y.:
I claim the combination and relative arrangement of the valves, v and v', when rigidly attached to the pivoted lever, G, with the hollow piston, P, having a head composed of the plates, B and C, between which is arranged the disk valve, D, which is constructed and operates conjointly with the other parts in the manner shown and for the nurnose described.

48,166.—Steam Regulator Valve.—George H. Fox, Bos-

ton, Mass.:
I claim the combination of the valve, e, diaphragm, I, and inlet
and outlet chambers when arranged to operate together and with
eference to each other, substantially as set forth.

48,167.—Concussion Fuse for Explosive Shells,—George P. Gauster, New York City:
I claim the use of two cones, C and D, operating in a double coned chamber, substantially as shown and described.

48,168.—Head for Barrels.—Lewis S. Gilliland, Dayton,

Ohio:
I claim, First, The removable barrel head with adjustable regments arranged and operated so as to be lessened and enlarged in circumteren e, for the purpose of being, placed into and out of the croze of barrels or casks without moving any of the hoops thereon, constructed as described.

Second, I claim the arrangement and use of either the lever ratchet or the holder and thumb screws or their equivalents for the

for the purpose herein exclained.

48,169. — Wagon Brake. — Willis Glaze, Rochester, Ind.:
I claim, First, The connecting of the whifile trees, Q, to a bar, opivoted to a rod, e, whith is connected with the lover, J, for the purpose of relieving the rear wheels of the pressure of the shoes, G, under the pull of the team, as set forth.

Second, The arrangement of the slide, K, fitted in the guide plate, L, lever, J, and rods, e M, and thimble, N, all saranged to operate in connection with the levers, E E, substantially as and for the purpose specified.

Third, The combination of the levers, E E, rod, I, lever, J, rod, c, slide, K, rod, M, and thimble, N, with the bar, O, connected by rods, P P, to the whille trees, Q Q, for the purpose set forth.

(This layouther roates to a new and improved self-acting brake.)

(This invention relates to a new and improved self-acting brake for wagons, and it consists in a novel arangement of parts, whereby a very simple brake of the kind specified is obtained and one which may be applied at a moderate expense.]

48,170.—Cil Ejectors.—Wm. R. Greenleaf, Buffalo,

N. Y.:

I claim the combination of the ejector or ejectors, C. or equivalent, with one, two, three or more compartments or chambers, A.
for the purpose and substantially as described.

48,171.—Flower Basket,—G. Gunther, New York City: I claim a flower basket, A, with a detachable bottom, made sub-stantially as set forth.

[This invention consists in a flower basket with a detachable cup or bottom in such a manner that water or other impurities accumu-lating in the lower part of the basket can be readily and easily removed without injuring the root of the plant or plants growing in

48,172.-Filter for Oils, Etc.-Phillip Halle, Philadel-

18,172.—Filter for Oils, Etc.—Phillip Halle, Philadelphia, Pa.:

I claim, First, A filter for purifying oils, consisting of a close chamber having a perforated diaphragm top and a diaphragm botom composed of a number of conteal tubes fitted with raw cotton, ubstantially in the manner described.

Second, The use of raw cotton in conical tubes, substantially in the manner and for the purpose set torth.

Third, The combination of a series of two or more filters, contracted substantially in the manner described for the purposes set orth.

Fourth, The combination.

forth. The combination of one or more filters constructed sub-stantially in the manner described with a heating or refrigerating yesel, constructed and arranged substantially in the manner de-scribed for the purposes set forth.

48,173.—Ice Scraper.—H. W. Harkness and J. C. Mack, Bristol, Conn.:

We claim as a new article of manufacturing an ice scraper, the bowl or body, a, having an aperture, m, in its bottom, in combination with the knife or scraper, c, pin or screw, l, and handle, n, suo stantially as and for the purpose described.

48,174.—Machine for Cutting off Cigars.—Conrad and Frederick W. Hoffman, Morrisania, N. Y.:

We claim, First, The hinged trough or channel plate, C, operated by the knile lever, and arranged in the manner and for the purpose

the knile lever, and arranged in the manner and for the purpose scribed Second, We claim the plate, D, operated by a pin, s, fast to the ser, F, in combination with an inclined projection, a, fast to the ame and arranged in the manner and for the purpose set forth. Third, We claim the movable head piece, E, in combination with e plate, D, as described.

Fourth, We claim, in combination with the plate, D, the index tehet wheel, H, arranged and operated in the manner and for the propose substantially as set forth and described.

Fifth, We claim the combination of the marble table, B, trough, plate, D, knife lever, F, and index wheel, H, when arranged and cerating together in the manner and for the purpose substantially set forth and described.

operating together in the manner and for the purpose substantially as set forth and described.

48,175.—Machine for Gathering and Loading Stone, Hay, Etc.—George W. Holley, Niagara, N. Y.:
First, I claim operating devices for elevating hay, stone, or substances of any kind, by means of a backward or retrograde move of the horses.

Second, I claim the use of two tongues to one wagon, as described, to permit the same to be drawn forward as usual and adapt the motion of the horses in backing to be transmitted to elevating devices, substantially as set forth.

Third, I claim the slot, h, in the lower tongue, H, in combination with the evener, P., and cord, Q, the whole being employed in the manner and for the purpose stated herein.

Fourth, In a machine herein constructed as herein 'escribed, I claim the combination of the movable rack frame, J J1 J2 the cog wheels, G G, the pinion, O, and the shaft, F. the whole being constructed and arranged to operate in the manner and for the purpose explained.

Fifth, I claim the lever, S, in combination with the clutch, T, when employed to enable the attendant to assist in elevating the hay or stone, as set forth.

Sixth, I claim the neck yoke, R, employed to attach the upper tongue, H', to the horses, so as to cause said tongue to underry the backward movement of the horses as and for the object specified.

48,176.—Match Splint Cards.—Bennet Hotchkiss, New

48,176.—Match Splint Cards.—Bennet Hotchkiss, New Haven, Conn.:

I claim, as a new device of manufacture, making the cards of match splints, substantially as herein described and set torth. 48,177.—Chair.—James A. and Henry A. House, Bridge-

port, Conn.:
We claim the combination of reel, R, bolt, D, spring, x, and cords, operating together, substantially as and for the purpose specified, 48,178.—Boy's Sleds.—David G. Hussey, Nantucket,

48,178.—Boy's Sleds.—David G. Hussey, Nantucket, Mass.:
I claim the constructing or forming of the sled of a plurality of parts attached respectively to the separate frame pieces, a and a', a ternately arranged in one plane as represented in the drawings so as to constitute a level floor or bed and in such a manner, that said parts may be extended in a greater or less degree to increase the capacity of the sled as may be reculted.

Second, The combination of the pivoted steering frame, E. mounted on a pair of runners. C c, and the levers, F and H, constructed, arranged and operating as described in connection with levers, I, or equivalent means for actuating the lever, H.

Third, The combination of the sliding foot piece, L K and k, and elastic brake teeth, h h, all constructed, arranged and operating substantially as and for the purpose set forth.

48,179.—Horse Rake.—David G. Hussey, Nantucket, Mass.:

(This invention relates to a new and improved mode of forming or employed for operat ing, raising and lowering the same, so that the rake may be kep: perfectly to its wo k, in order to gather or rake up a load and readily adjusted in order to discharge the same.

48,180,-Radiating Attachment for Stoves and Fur-

is, 180.—Radiating Attachment for Stoves and Furnaces.—Jacob B. Hyzer, Janesville, Wis.:

I claim, First, The combination of the flue, g, and damper, h, with the flue, g', and central smoke pipe, D, substantially as and for e purpose set forth.

S cond, The combination of the outer and inner radiating cylinders, G and O, and the radial plates, I'P and I'P, producing ascending flued, with the inner unconfined hot-air space, c; centilated above and below, substantially as and for the purpose set forth.

48,181.-Wood Bending Machine.-Samuel Keeler, Lan-

caster, Pa.

I claim the arrangement and combination of the devices, C D E H
L M and N, as herein described, and for the purposes set forth.

48,182,-Churn.-R. Keese, Cardington, Ohio:

I claim the rotating winged beaters, L, cross arms or beaters, h, in combination with the sweep, f, when arranged and operating as and for the purpose set forth.

48,183.—Clothes Dryer: —D. J. Kellogg, Rochester N. Y.: I claim the stop and retaining flances, 1g, in combination with the bracket, A, and clothes bars, B, substantially as herein specified. 48,184.—Stove Pipe Drum.—Werner Kroeger, Milwau-

48,181.—Stove Fipe Drum.—werher kroeger, aniwau-kee, Wis.;

1 claim the cylinder, A, provided with the two internal cylinders, EE, having long and short plates, c c d d d, attached to their exterior surfaces and having disks, F G, at their ends provided with openings, a c, all arranged substantially as shown with the dampers, G K, to operate substantially as and for the purpose set forth.

[This invention relates to a new and improved heat radiator de signed more especially for stove pipes to arrest the heat passing through the same and radiate it into the apartment so that it can not escape into the flue with the products of combustion.

not escape into the flue with the products of combustion.]

48,185,—Planing Machine.—Henry A. Lee, Worcester, Mass.:

I claim, First, The combination with the horizontal cutter cylinder of a molding machine of an adjustable automatic pressure stand whereby the pressure of the shoe upon the stoff remains the same whether the stand is removed to or from the cylinder, substantially as and for the purposes stated.

Second The combination with the adjustable stand, L, of pressure bar, I, screw shaft, P, and weighted lovers, P, substantially as and for the purposes specified.

Third, In combination with the adjustable pressure bars, K, the adjusting screws, P, and screw, nuts, m, operating against the rounded ends of the bar, C, as and for the purpose specified.

Fourth, in combination with the stand, M, the slotted flanges, d, when secured to the standard, T, of the cutter cylinder, D, to make it adjustable thereon as and for the purposes specified.

Fifth, In combination with the cutter cylinder, E, working under the bed, B, the adjustable mouth piece, p, in the bed plate, by which moldings can be cut on the lower corners of the stuff, while the sides and face are worked, as herein shown and described.

48,186,—Leather Dressing Machine,—Richard Lee.

48,186.—Leather Dressing Machine.—Richard Lee,

Newark, N. J.:

I claim the rolls or rubbers with their semicircles, tilt springs and spring pearings constructed in the manner and for the purpose specified, the manner of atternating the action or the table, substantially as shown, and the whole machine with the various parts combined, arranged and operated in the manner and for the purpose herein above set forth.

48,187.-Incendiary Compound.-H. W. Libbey, Cleve-

land, Ohio:

I claim an incendiary compound composed of the ingredients herein named and compounded in the manner substantially as herein specified and set forth.

48,188.—Ladies' Boot.—H. Libby, Evansville, Wis.:

1 claim a boot for ladies and misses use, made with a heel piece,
d, and extensions r r. constructed substantially in the manner
herein shown and described.

[This invention relates to a novel improvement in la ies' or misses' boots, [whereby a neat and perfect fitting as well as easy feeling boot to the foot is obtained. J

48,189.—Flour Sifter.—Joseph H. Littlefield, Cam-

bridge, Mass.:
I claim the arrangement and combination of the case, B B C C sieve, G, the two side pieces, D D, and the equilateral triangular shaft. A, or its equivalent, provided with the grooves, i ii, and the elastic strips, E E E, substantially as described and for the purpose set forth.

48,190 .- Egg Cooker .- Wesley Loucks, Schoharie,

N. Y.: I claim the within described egg cooker as a new article of manu-acture.

48,191.—Car Seat.—Edwin Lockwood and George W.
Pitman, Bordentown, N. Y.:
I claim the seat, B, provided with the adjustable rods, C, arranged substantially as shown, in connection with the reversable back, H, applied to the seat by means of the bars, I G, substantially as and for the purpose specified.

(This invention relates to a new and improved adjustable car seat for sleeping cars, and it consists in constructing and arranging the back and the seat in such a manuer that both may be inclined to suit the occupant when desiring to sleep or to be in an inclined position, and both the seat and back rendered capable of being adjusted or reversed, to suit the direction in which the car is running. 48,192.—Grape Box.—O. Mallory, Rochester, N. Y.:

I claim as an improved article of manufacture, a grape box composed of an inflexible, or wooden bottom, B, having a beyelled edge cut under from the face, or inside of the bottom, for the purposes set forth, and being arranged and combined with the straw-board hoop or side, A, in the manner shown and described.

hoop or side, A, in the manner shown and described.

48,193.—Photographic Camera Stand.—Hervy Manger, Philadelphia, Pa.:

I claim in combination with the rigid and main supporting frame of a camera stand the hinged beams, C C H, endless screw shafts, G, and table, C, substantially as and for the purposes specified.

I also claim, in combination with the main supporting trame of a camera stand that hinged beams, B, C, H, endless screw shafts, G, L, and table, E substantially as and for the purposes specified.

I also claim in combination with the adjustable camera stand herein described the adjustable spring supporting rods. P, whether the same are used with or without castor rolls substantially as and for the purposes specified.

48,194.-Fruit Knife and Nut Pick.-George Mayland,

48,195.—Broom Head.-Chas. E. Miller, Cincinnati,

Ohio:
I claim, First, Connecting the jaws of a metallic broom head by a detachable or caper hinge or articulation, at the point of the head, or that pulp of the same further from the handle.

Second, In combination with the above, I further claim the sockets, C.C., and pintles, c.c., when formed upon the ends of arms projecting downward from the lower bars, D.D., as and for the purposes specified.

48,196.—Ash Sifter.—Chas. T. Miller, Providence, R. I. of the hopper, B, vibrating slave, G, dedecting board, g, included as board, c, arranged reversely to the sleve, g, and doors, D E and F substantially as and for the purposes described.

(This invention has for its object to provide a coal and ash sifter which may be operated with ease, and in the use of which the op erator will not be annoyed by the rising of dust and fine ashes, no will these be permitted to escape into the apartment in which the

48,197.-Hand Corn Planter.-Jacob Morris, Auburn,

Missouri:

I claim the employment or use of the rod or bar, H, when used in connection with the two side plates, A A', pivoted together and provided with plates, I I, and also provided respectively with the hopper, E, and the slide, F, substantially as and for the purpose herein set forth. Missouri:

[This invention relates to a new and improved corn planter of that class which are operated directly by the hand, and it has for its ob ject the obtaining of an implement of the kind specified which will during the planting operation, scatter the seed so that it will be opped at suitable distances apart in the hills and admit of the

stalks being sufficiently far apart that they will not interiere with 48,216.—Grinding Faucets and Valves.—Thomas Shaw, each other in growing.]

48,198.—Liniment.—James H. M. Morris, Reading, Ill.: I claim the liniment composed of the ingredients compounded in the manner and in the proportions herein described.

48,199 .- Machine for Pointing Paper Hangings .- Fran-

cis S. Munroe, Jr., Grantville, Mass., and Thomas Mason, Boston, Mass.;
We claim the end ess series of ink rolls, k, and the tablet, r, when combined and arranged to operate together, and in connection with the inking apparatus and the elastic printing cylinder, c, substantially as set forth.

18,200.—Detachable Oven.—Aaron B. Nott, Fairhaven,

S,200.—Petachable Oven.—Altron B. Rote, Mass.;
I claim the combination and arrangement of the oven, O, the two lues, A G, the induction and eduction pipes, F F, the opening, e, ind the dampers, D d d, the whole being substantially as specified. I also claim, in connection with the oven and its flues, arranged as lescribed, the four ledges, a a a a, arranged and applied to the four ideas of the interior of the oven.
I also claim, in connection with the oven and its flues, arranged as described, the boiler openings, f f f f, applied to one end and one side of the outer flue case, for the purpose specified.

48,201.—Magazine Fire-arm.—B. F. Parkinson, Washington, Pa.:
I claim the lowed, removable magazine, B, constructed and operated substantially as described, for the purpose set forth.

Second, The spring pin, a, for releasing the pawl, enabling the arm to be cocked without rotating the cylinder, or rotating the cylinder without the intervention of the hammer or trigger.

18,202.—Pump.—J. Peabody, Dixmont Centre, Maine: I claim the arrangement of the valve, o, the valve chamber, D. and its discharge passage, b, with the piston, B, and its rod, C, and the pump barrel, its other valves and valve passages, and the eduction passage, L, the whole being substantially as specified.

48,203.—Hydrometer.—Henry Petrie, Chicago, Ill.:
First, I claim the adjustable bottom, 3 and 4, when used for the purposes specified.
Second, A hydrometer with the table, B, attached to the case thereof, substantially as set forth.

18,201.—Sewing Machine.—Louis Planer, New York

Octy:

I claim the combination of the shaft, 12, with its arm, 13, journal elece, 7, 27ms, 6, and 14, 27ms, 9, link, 5, arranged and operating to-rether to lift and adjust the presser toot of a sewing machine, substantially as described and for the purposes set forth.

18,205 .-- Feed-wheel for Sewing Machine .-- Louis Planer,

18,206.-Feed-wheel for Sewing Machine.-Louis Planer,

for regulating the feed, substantially as described and specified.

48,207.—Carriage Wheel.—John Raddin, Lynn, Mass.:

First, I claim the thimble, O, in combination with the screw, N, and elastic packing, M, applied to the spokes and felly of a carriage wheel, substantially as and for the purpose described.

Second, The metallic thimble, P, applied to the felly end of a wooden spoke, in combination with the screw, J, packing, M, thimble, O, and fixed screw, N, substantially as shown in Fig. 3, and for the purpose described.

Third, The fixed screw, J, in a wooden hub, operating in combination with an internal screw cut in the end of a spoke, substantially as and for the purpose described.

Fourth, The socket, W, provided with a clasp entirely surrounding the felly, when used in combination with a spoke rendered adjustable by means of a screw, and the elastic packing, M, substantially as and for the purpose described.

Sixth. The combination of a hollow metallic spoke with a thimble, O, screw, N, and elastic packing, M, substantially as and for the purpose described.

48,208.—Holding and Filling Rage.

pose described.

48,208.—Holding and Filling Bags.—George E. Randall, Yaphank, N. Y. Antedated June 6, 1865;
I claim. First, The combination of the two shafts, C.C., fitted with pointed pins, c.c, and furnished with arms, j and c", the notched lever, P. and spring, i, substantially as herein described, for the purpose of holding and extending open the mouth of the bag.

Second, The lever, F., bar, E., platform, G. and measure, H, in combination with each other, and with the devices for holding and extending open the mouth of the bag, substantially as herein set forth.

48, 209.—Lock.—H. D. Richardson, Florence, Mass.:

1 claim a lock, when constructed and arranged substantially in the
manner described.

48,210.—Extension Ladder.—John L. Ripley, Fremouth,

[This invention consists in a combination of a series of ladders ar-

ranged in such a manner that they may be adjusted together and extended with the greatest facility, so as to form a long ladder, to be used against buildings, etc., and be also capable of being adjusted together so as to form an extensive step-ladder when the latter is re

48,211.—Spring Balance.—Herman Saloshinsky, New York City:
I claim the combination of platform rod, D, cross bar, B, springs, S and S, rack, m, pinton'n, and dial handle, p, when arranged and operating together in the manner and for the purpose substantially as set forth and described.

48,212.—Horse-power.—Gelston Sanford, New York

City:

City:

First, I claim the construction, combination and arrangement of the quadruple bearing, e, and bearings, a a 'a2'a3, substantially in the manner and for the purposes here a set forth and described.

Second, The center-piece, B, constructed substantially as herein described.

The plate, A, provided with bearings, g and f f, in combina-a changeable wheels, L and M, in the manner and for the specified.

48,213.—Hardening and Tempering Steel.—Elliot Sav-age and Henry Stratton, West Meriden, Conn.: We claim the use or employment in hardening steel of metallic solutions, in the manner and for the purpose substantially as set

48,214.—Roller for Trunk.—John Schmadel, Newark, N. J., and John A. Lieb, Essex, N. J.:

We claim the combination of the flexible plate. A, with punched cars, a a, and the roller, B, with solid journals, b t, the whole being constructed and employed in the manner and for the purposes herein specified.

48,215.—Casting Coffin Handles.—Denning W. Sexton,
East Hampton, Conn.:
1 claim the within-described device, consisting of the triangular mold or drag, 5.3, with the respective hinged copes, constructed substantially as and for the purpose herein described.

8,216.—Grinding Patters and
Philadelphia, Pa.:
I claim the employment of a series of mandrels rotating alternatey in opposite directions, when constructed, arranged and operated
substantially as and for the purpose set forth.

Chairman New York

48,217.—Copying Press.—Walter Shriver, New York

City:
I claim the method above described for forming the connection tween the screw and the platen, by casting the two together, as escribed, for the purpose set forth.

18.218.—Ejector for Steam Boiler Furnaces.—John N. Snowdon and Henry Wilkins, Brownsville, Pa.: We claim the combination of the nozzle, A, the nozzle, B', and the nozzle, C, placed concentrically one within the other, the nozzles, B' C', being connected respectively with a steam boiler and with an old or other reservoir, substantially as above described.

[This invention has for its chief the content of the

[This invention has for its object to promote combustion in fur.naces of steam boilers and other furnaces, and it consists in an apparatus so constructed as to inject oil or water and air by means of and along with a current of steam into a furnace, and thereby promote the more perfect combustion of the gases and products o

48,219.—Submerged Pump.—H. M. Stoker, Watson, III.: I claim, First, In double-acting submerged pumps, the combination of the movable cylinder, C, having inlet valves in both its heads, D D', with the hollow piston rod and hollow piston, the inlet passages of said cylinder being governed by the same annular valve, substantially as described.

Second, I also claim making the hollow piston, H, with solid heads, perforated as shown, and with clastic sides, substantially as above described.

[This invention relates to that class of pumps the cylinder and

vaives of which are to be submerged, so as to be protected from the

18,220.—Submerged Pump.—H. M. Stoker, Watson, III.

(This invention relates to that class of submerged pumps, the apper ends of whose cylinder are open, so that the water rests always upon the upper heads of the pistons.

48,221.—Paint for Ships' Bottoms.—James Gamage Tarr and Augustus Henry Wenson, Gloucester, Mass.: We claim the composition. or a paint, in which metallic zinc forms the basis, and is alloyed or in contact with metals which dissolve less readily in sea water, substantially as set forth herein.

48,222.—Hat.—Daniel K. Albright, Philadelphia, Pa., and Leo H. De Lange, Burlington, N. J.:
We claim enlarging a hat near the brim, so that an annular space may be formed within the enlargement, in the manner and for the purpose specified.

18,223.—Suspended.

48,224.—Coal Breaker.—Philip Umholtz, Tremont, Pa.:
I claim making the toothed roller of the coal breaker, with an occasional row of large teeth set at distant intervals, substantially as and for the purpose described.

as and for the purpose described.

48,225.—Horse Fastener.—Felix Vogeli, Newburgh, N. Y.:

I claim, First, The falling shutter, operated by any suitable lifting and lowering apparatus, and furnished with means for attaching animals thereto, substantially as and for the purpose described.

Second, The combination of the sureingle, the fore and aft straps, and the head straps, for attaching the animal securely in a vertical position, irrespective of the devices for prostrating the animal.

Third, The combination of the straps, b b, with the sureingle straps of their equivalents, and the roller, H. by means of which combined devices the animal may be suspended for treatment or describine.

Fourth, The combination of the straps by which the body of the horse is secured, those pertaining to the hobbling of the feet, and the cross-bar and strap to which a foot is secured for shoeing, etc., forming in this connection a device for the compulsory acquiescence of the animal in the operation of shoeing or other treatment in which such position of the foot or limb is desirable.

which such position of the foot or limb is desirable.

48,226.—Apparatus for Separating Metals from Ores.—
J. D. Whelpley and Jacob J. Storer, Boston, Mass.;
We claim, First, The separating of metals from mixtures of earth and metal by the application of gravity in counter action to currents of air in an upright pulverizing mill, the air moving upward to carry off the finer dust of earthy matter, while the metal falls by its superior gravity, substantially as described.

Second, The tangential conductor, E, leading from the periphery of the mill, in combination with the pocket, B, or its equivalent, substantially as and for the purpose described.

Third, The shorter pipe, I, within the larger and longer pipe, m, when arranged in reference to the mill, A, and pocket, C, or their equivalent, substantially as set forth and for the purpose described.

Fourth, The employment of a water tank and a draft and spray wheel, substantially as set forth, and for the purpose described.

Firth, The pipe, F, in combination with the pocket, B, pipes, I m, and pocket, C, substantially as and for the purpose described.

Seventh, The windage post, w, in the pocket, B, substantially as and for the purpose described.

Sixth, The windage post, w, in the pocket, C, substantially as and for the purpose described.

Eighth, The air post, v, in combination with the mill, A, tangential conductor, E, pocket, B, and pipe, F, substantially as and for the purpose described.

Ninth, The valves, k and i, at the top and bottom of the mill to change the direction of the currents of air through the same, substantially as described.

Tenth, The shelves or partitions, t, arranged in the partitions the change the direction of partitions, t, arranged in the partitions.

148, 227.—Cartridge Retractor for Breech-loading Fire-arms.—H. H. Wolcott, Yonkers, N. Y.; I claim the combination of the shell drawer, F. tongue, g, laterally projecting rim., l, and pin, h, all constructed and arranged substan-tially as and for the purpose set forth.

[This invention consists of a new and improved shell drawer for

breech-loading fire-arms, which is operated by means of the swinging of the breech-plate.]

48,228, -Wagon Lock. - John F. Yates, Mooresville, Ind.:

48.229 .- Corn Planter .- E. M. Wright, Wilmington,

Ohio:

48,230.—Mode of Lubricating Car Wheels.—Walter You mons, Lansingburg, N. Y.:

mons, Lansingburg, N.

nection with the parts aforesaid, the oil recep-tion end of the hub, substantially as and for the

48,231.—Drum Stove.—D. M. Younkman, Fremont, Ohio-I claim the drum stove herein set forth as a new article of manufac-

[This invention relates to the class of stoves known as drum stoves which are heated by means of currents of hot air and of the products of combustion, and it consists in an improved arrangement of flues and ther parts, whereby a more economical use is made of the heat which it is to be the medium of distributing.]

48,232.—Broom Head.—Frederick C. Bolender, Lima, Ohlo, assignor to himself and Wm. F. Doggett, Indianapolis, Ind.:
I claim the arrangement of the screw stem. A B C, binder, E F G, sheath. H I, and ferrule J, or their equivalents, to form a metallic broom head, substantially as set forth.

48,233.—Grain Separator.—S. K. Ayres (assignor to himself and B. A. Wilder), Delton, Wis.:
I claim, First, The combination of the oval cam, D. spring, F. rod, E. shaft, H. arms, I. V. and rods, J. L. for the purpose of operating the screens, or giving a shake motion to the same, as set forth.

Second, The hanging or suspending of the shoe, N, on the adjustable har, A, by means of a book arm, P, and vibrating or reciprocating bar, N, as set forth.

48,234.—Door-bell or Gong.—A. G. Dexter, San Francisco, Cal., assignor to himself and Thos. Mackell, Palmyra, N. Y.:

I claim a gong for a door, the hammer of which is operated through the medium of a plate or handle at the outer side of the door, so arranged or connected with levers and the hammer shaft that the latter will be actuated and the gong sounded, by pressing said plate or handle in a direction toward the door, substantially as herein set forth.

I further claim the arrangement of the hammer shaft, J, bent lever, F, with yielding plate, M, attached, lever, B, and plate or handle, D, or its equivalent, with the springs, H L, and gong, I, substantially as and [This invarience.]

[This invention relates to a new and improved gong, applied to a door in such a manner as to serve as an improvement on the ordinary doorbell, it being more readily applied, less liable to get out of repair, and sufficiently sonorous to be heard all through a house.]

48,235.—Machine for Brushing Hats.—Cyprien Faure (assignor to himself and Henry J. Yates), New York City:
I claim, First, The brushes, F, and reciprocating rod, C, constructed and arranged substantially as herein described.
Second, The combination of a guide groove, G, and pin, X, or their equivalents, with the reciprocating rod, C, and brushes, E, substantially as and for the purpose set forth.
Third, The application of the joint, F, in combination with the rod, C, brushes, F, and blocks, Z, substantially as and for the purpose described.

Fourth, The adjustable rings, D, in combination with the felting blocks, Z, constructed and operating substantially as and for the pur-pose specified.

[The object of this invention is to perform by machinery the operation of brushing felt hats, caps, etc., which usually is performed by manual labor, and requires great exertion and much time.]

48,236.—Buckle.—Chas. B. Hatfield (assignor to Eugene H. Richards), Boston, Mass.: I claim a buckle for fastening shoes and other articles, constructed and applied substantially in the manner herein shown and described.

[This invention relates to that class of buckles designed for fastening shoes, skate straps, etc., and it consists in forming the buckle of two sep arate parts, one of which is a square or other shaped frame, having suitable lips on its under side, to enable it to slide along on the strap, and secures it to the tongue; said tongue constitutes the other part, and it is attached directly to the article itself; it has a flange on the end of the side, which gradually increases in depth toward its end, over which flange the lips of the other part slide, and thus the two parts of the article

48,237.—Nutmeg Grater.—Joseph Lofvendahl (assignor to himself and John Bloomgrist), Boston, Mass.:

I claim, First, The hopper, a.a., in combination with the springs, C, or their equivalents, constructed substantially as herein shown and described.

Second, The plunger, b, in combination with the cover, D, and hopper, a a, arranged substantially in the manner and for the purposes herein specified.

[This invention consists in arranging in a box of any desirable form, at hopper, for receiving the substance to be grated, having expanding sides, for the purpose of permitting larger or smaller articles to be thrust through them, to be subjected to the action of a revolving grater, and yet retain a hold upon such article sufficient to prevent their displacement by the grater, said grater being arranged in the interior of the box; i also consists in the employment or use in connection with such a hopper of a plunger having a spiral or other suitable spring arranged around its stem, for throwing it upward after it has been depressed, for the pur

its stem, for throwing it upward after it has been depressed, for the purpose of forcing the nutmeg or other substance upon the grater.]

48,238.—Channeled Sole.—Gordon McKay, Boston Mass., assignor to James Purinton, Jr., Lynn, Mnss.:

I claim a channeled sole, in which the channel is formed by displacement of the material by pressure, substantially as setforth.

48,239.—Water-proof Collar and Cuff.—George W. Ray (assignor to Ray & Taylor), Springfield, Mass.:

I claim a paper collar or cuff when enamelled with the composition and by the process herein described.

48,240.—Stove.—Thomas Scott (assignor to Thomas Scott, Sr.), Carrollton, Ill.:

I claim. First, Protecting the interior of sheet-iron or other thin stoves, with removable cast-iron linings, constructed and applied within the stove substantially as described.

Second, I also claim the arch, B, in combination with the lining, C, substantially as above described.

[This invention relates more particularly to stoves for heating purposes, but the principle of the invention is applicable to stoves for cooking purposes. The invention consists in a novel way of com bining cast-iron linings within a sheet-iron stove, whereby the walls of the latter are protected from the fire, and the heating capacity of the whole structure is increased.]

the whole structure is increased.]

48,241.—Buckle. Dwight L. Smith (assignor to the Waterbury Buckle Company), Waterbury, Conn.:

I claim as a new article of manufacture the combination of the hinges, b h, with the ears or rests, cc, on which the broad end, d, of the lever is supported, when the whole is constructed, arranged and fitted for use, substantially as herein described and set forth.

48,242, Door-bell, Andrew Turnbull (assignor to P. & F. Corbin), New Britain, Conn.:

48,243 .- Manufacture of White Lead .- Wm. Baker, Sheffield, Eng.:

48,244.—Circular Brick-kiln.—Frederick E. Hoffman,

I c'aim the employment or use of a continuous arch, divided in a num

48,245.—Machine for Upsetting Wagon Tires.—Gideon Huntington, Norwichville, Canada West. Antedated June 7, 1865:

Iclaim, First, The self-acting keys or wedges, acting in the loops or bevelled mortises, as above described.

Second. The combination of the keys and mortises with the various parts of this machine, and for the purposes herein set forth.

48,246.—Knapsack.—Antoine Perrin, Paris, France:
I claim, First, The peculiar combination of garment and bag, in the
manner and for the purposes hereinbefore described.
Second, The peculiar construction of garment, combined or not with
a sack or bag, as and for the purposes hereinbefore described.

48,247.—Grate for Steam-boller Furnace.—Johann Zeh,

Vienna, Austria:

First, The combination with the transverse grate bars, r, of the rods, n and e, and their operating devices, for the purpose of imparting to he grate bars an oscillating movement independent of their supporting cond. The combination of the coal hopper, a, inclined furnace grate nder conduit, c, and ash pit, constructed and operated as herein de

bed. hird, The combination with the transverse grate bars, r, of the rods and their operating devices, for the purpose of imparting to the en-grate bodily a backward and forward motion, as herein specified.

tire grate bodily a backward and forward motion, as herein specified.

48,248.—Sewing Machine.—John J. Sibley, New York City, assignor to Bruen Manufacturing Company of New York:

First, I claim the attachment described, adjustable to a Wheeler & Wilson sewing machine, to make a stitch of three or more threads, substantially in the manner set forth.

Second, I claim the combination of the attachment described, with the needle, rotating book, bobbin and other operative parts of a Wheeler & Wilson sewing machine, except the ring slide.

Third, I claim the ring slide, j, constructed and operating substantially as described.

Fourth, I claim the combination of the needle, l, bobbin, k, thread carrier, d, and ring slide, j, constructed and operating together, substantially as described.

Fifth, I claim the step, y, constructed and operating substantially as set forth.

REISSUES.

REISSUES.

1,989.—Distilling Hydro-carbon Oils.—William Archer (assignor to himself and William P. Downer), New York City. Patented Sept. 6, 1864:

I claim the continuous and fractional distillation and separation of hydro-carbon and other oils and volatile substances by the direct application of superheated steam or hot air to the surface of a flowing sheet, column, or shower of the substance to be distilled, in the manner described, or any modification thereof by which the same result may be accomplished.

I also claim the combination of the leading tube, b, with the deflecting and receiving discs, c and e, with the spiral or straight feeding tube, d, in the manner and for the purposes described.

1.990.—Hoisting Machine.—William G. Brower. New

ing tube, d, in the manner and for the purposes described.

1.990.—Hoisting Machine.—William G. Brower, New Brunswick, N. J. Patented May 25, 1858:

I claim, First. The combination in a machine for hoisting of a coupling, J, or its equivalent, for connecting and disconnecting the griving power to and irom the windlass, with the sliding bars, k N, levers, O O, substantially as and for the purpose above described.

Second, I also claim the devices mentioned in the preceding clause of the claim, in combination with means for holding the article to be raised, substantially as and for the purpose above described.

Third, I also claim withdrawing the levers, O O, from their engagement with the shi ting bar, R, by means of the hoisting rope or chain, and the cross-bar, P, and rods, g, or their equivalents, so as to connect the windlass with the driving power by means of the descent or weight of the rope or chain and its attachments, substantially as described.

tally as described.

1,991.—Machine for Peeling Willow.—George J. Colby, Waterbury, Vt. Patented Oct. 12, 1858:
I claim, First, The application and use of vulcanized india-rubber, or other yielding elastic suostances, for rollers, to admit various sizes of oziers or willow rods, to be drawn in oetween, rabbed and wrung, to loosen the bank for peeling and discharge the rods, as herein specified.

Second, I claim the serrated metal roller, B, in connection with an elastic or yielding roller, B', they both having end chase, or a lateral vibrating motion, to mangle and rub rods without crushing them, for the manufacture of willow ware.

Third, I claim the racs or comb, N, for separating the loosened bark from the rods, in combination with the feed rollers, L M, and the faster speed rollers, H H', for discharging the peeled rods, as herein set forth.

1,992.—Mode of Fastening India-rubber Rolls to Metallic

Shafts.—George J. Colby, Waterbury, Vt. Patented April 1, 1862:
I claim the process of forming a cement to fasten vulcanized india bber, gutta percha, or other similar gums, to metal, woods, or her substances, by heating the surface of the gum sufficient to elt it to a sticky state, and then applying it in that state to other sated substances, and cool off, as herein specified.

heated substances, and cool off, as herein specified.

1,993.—Steam Boiler. Edward N. Dickerson, New York City. Patented March 1, 1864:

I claim, First, A superheating steam boiler, constructed and operating substantially on the principles described.

Second, Combining in a boiler an evaporating apparatus so constructed and arranged as to convey the water in divided streams from one water space to another across the column of hot gases ascending from the fire, with a superheating apparatus placed above it so constructed and arranged as to convey the steam in divided streams across the same column of hot gases, in an opposite direction from that in which the water first passed, in order that it may be superheated on its passase to the engine, substantially as described.

streams across the same column of not gases, in an opposite direction from that in which the water first passed, in order that it may be superheated on its passase to the engine, substantially as described.

Third, Specifically and as the best elements for constructing my new bo ler, I claim the arrangement of the tubes in the evaporating apparatus which convey the water in divided streams across the current of hot gases and oth I tubes still farther removed from the first through which the hot gases pass and around which the steam flows in divided streams, substantially as described.

Fourth, I claim so arranging the steam delivery aperture, leading the steam out from the suriace of the water in an inclined straight water tubular boiler, in reference to the descending column of water, so that the tendency of water to rise up to an aperture through which steam is being drawn, may be counteracted by the controlling tendency to descent in the sinking column of water, substantially as described; and this I claim, whether a superheating apparatus is described; and this I claim, whether a superheating apparatus is sueed or not.

Flith, I claim the perforated sheet or other equivalent device through which the products of combustion are passed from the space above the evaporating apparatus to the chimney, so constructed and arranged that the hot gases will be drawn to the chimney through the apertures extending along the length of the evaporating apparatus in divided streams so as to disperse the heat over the evaporating surface equally, by drawing it equally from the grates, and also to diminish its intensity on the superheating apparatus in evaporating surface equally, by drawing it equally from the grates, and also to diminish its intensity on the superheating apparatus inside of a boiler, and forming a part of it, straight water tubes for evaporating surface equally in the steam of the tubes, and descend in the channel at the higher ends of the tubes, and descend in the channel at the higher ends of the superheat

Ninth, So arranging the superheating apparatus that any water which enters it at its entrance end, may drop out of it at its delivery and, and not be carried to the engine, substantially as described.

end, and not be carried to the engine, substantially as described.

1,994.—Turning Lathe.—Nathan Harper, Newark, N. J.
Patented, Feb. 14th, 1865:

I claim, First, a rest constructed so as to move freely in a straight line at right angles with the axis of the material being turned, in combination with springs or weights, and shaping patterns, substantially as described.

Second, A rest constructed so as to move freely in a straight line at either an acute angle with the axis of the material being turned substantially as described.

Third, A compound rest when composed of the functions above described in combination with the rest having only a horizontal motion, substantially as described.

1,995.—Manufacture of Dextrine, Sugar, Etc.—Theo-dore A. Hoffmann, Beardstown, Ill. Patented May

dore A. Hollmann, Beartostown, The 25, 1858:
I claim, First, The combination of steam and acids for converting tarch, corn and other cereals into dextrine, sugar and vinegar or leohol thereof, when said grain is subjected to the action of differnt acids and water, and the temperature of the mash is clevated to rom 233 to 350 degrees (below 350 degrees) Fahrenheit.
Second, Also the use of a closed mash tub of such strength as to cable to sustain the pressure due to the temperature of 225 to 350 egrees Fahrenheit, substantially as herein described, for the purose of mashing starch.

degrees Fahrenheit, substantially as herein described, for the purpose of mashing starch.

1,996.—Cultivator.—R. A. Leeper and Z. B. Kidder, San Jose, Ill., assignor to Dills, Kern & Co., Atlanta, Ill. Patented Feb. 12, 1861:

First, We claim suspending the share standards, I I, upon pivots or boits at their upper ends, substantially as and for the purposes shown and described.

Second. We claim the combination and arrangement of the share standards, I I, slotted supports, j J, and beams, L L, jointed at their front ends, as and for the purposes specified.

Third, We claim the employment of the crank shaft, M, provided with the arms, s and r, arranged and operating substantially as and for the purposes specified and described.

Fourth, We claim the combination of the oscillating standards, I I, beams, L L, crank shafts, M M, provided with the arms, r s, and rods, t, arranged and operating as specified and described.

Fifth, We claim, in combination with said standards, I, beams, L, connecting bar, K, crank shaft, M r s, and rod, t, the rod, O, and lever, N, arranged and operating as and for the purposes specified and shown.

Sixth, We claim the combination and arrangement of the oscillating standards, I I, supports, J J, cross bar, k, rods, I I, and beams, m m, substantially as and for the purposes - pectified.

Seventh, We claim in combination with said oscillating standards, II, uprights, J J, cross bars, k, rods, I I, and beams, m m, the employment of the fulcrum, h, upon the cross bar, g, lever, F, and rods, I I, all arranged and operating substantially as and for the purposes set forth.

Eighth, We claim the arrangement of the spindles, a a, bars, b b, and slotted plates, D D, with the frame, A, and seat, E, all arranged as and for the purposes shown and specified.

1,997.—Coat and Hat Hook.—Jas, T, and Horace A.

Pratt. New York City, assigness of Geo. F. L Col.

1,997.—Coat and Hat Hook.—Jas. T. and Horace A.
Pratt, New York City, assignees of Geo. F. J. Colburn. Patented Nov. 1, 1864:
We claim a coat or hat book, so constructed as to adapt it to be
slidden and adjusted upon its sustaining bar, substantially as herein
described.

DESIGNS.

2,083.—Photographic Card.—Augustus E.*Alden, Providence, R. I.

2,084.-Statuette of Abraham Lincoln.-J. A. Bailly, Philadelphia, Pa.

2,085, 2,086.—Comb.—Elias Brown, Wappinger's Falls, N. Y. (Two cases.)

2,087.—Skirt Border.—Robert M. Bailey, Boston, Mass. 2,088.—Music Stand.—M. H. Elmore, Buffalo, N. Y.

2,089.—Trade Mark.—A. F. Goodnow, New York City, assignor to the Lamson & Goodnow Manufacturing

2,090.—Plate of a Stove.—James Horton and John Martino (assignors to Stuart & Peterson), Philadelphia,

2,091.—Statuette of Shakespeare.—Edward J. Kuntze, New York City.

2,092.-Lamp Chimney.-John Letchworth, Philadelphia, Pa.

2,093.—Plate of a Stove.—John Martino (assignor to Stuart & Peterson), Philadelphia, Pa. Antedated May 30, 1865.

2,094.—Portable Stove.—John Martino and John Currie (assignors to Stuart & Peterson), Philadelphia, Pa. Antedated May 30, 1865.

2,095. Monument. James W. McLaughlin, Cincinnati,

2,096. Bust of Abraham Lincoln, Wm. H. Philip, Brooklyn, N. Y. 2,097.—Medallion Head of Abraham Lincoln.—James

Powell, Cincinnati, Ohio. 2,098,-Cook Stove.-Isaac A. Sheppard and Julius Holger, Philadelphia, Pa.

2,099, Cook Range, Isaac A. Sheppard, Philadelphia,

2,100 .- Flange of a Stove .- Phineas Smith, New York

Back Numbers and Volumes of the "Scientific American."

VOLUME IV., VII. AND VOLUME XI., (NEW SE-RIES) complete (bound) may be had at this office and from periodical dealers. Price, bound, \$3 00 per volume, by mail, \$3 75 which includes postage. Every mechanic, inventor or artisan in the United States should have a complete set of this publication for reference bscribers should not fail to preserve their numbers for binding VOLS, I., II., III., V., VI., VIII., IX. and X., are out of print an cannot be supplie 1.

NOTICE TO SUBSCRIBERS.

The first five numbers of the present volume of the Scientific AMERICAN being out of print, we shall commence the time of each new subscriber from the date of receipt of the order, unless the writer states specifically that he wishes such back numbers as can

RECEIPTS .- When money is paid at the office for sub scriptions, a receipt for it will always be given; but when subscribers remit their money by mail, they may consider the arrival of the first paper a bona-fide acknowledgement of our recept on of their

383
Bridges, trestle (Derron) 393
Bridges, trestle (Derron) 393
Brush handle (Radolph & Kasefang) 162
Brush, hydraulic (Welham) 462
Button fastening (Wilde) 390
Camera stand (Scouler) 319
Cannon, implement for destroying (Bonzano) 198
Cannon, system for forging (Hitchcock)

Car spring (Tosbach) 270
Car truck and brakes (Goodnow) 86
Carpet stretcher (Coller) 286
Carrage top, shifting (Enders) 374
Caster (Riley) 176
Caster, adjustable, for sewing machines (Dodge) 38
Chronometer escapement (Rothfelder) 131
Churn (Sayre) 390
Churu dasher (Lindsay) 406
Clothes horse (Sims) 839
Coal and ash sifter (Gilbert) 335
Coal scuttle (Chambers) 102
Converting reciprocating into rotary motion (Werni) 222
Corn husker, Ohio (Brinkerhoff) 14
Corn planter (Agnew) 174
Count-rsink, rotary (Welham) 402
Coupling, shaft (Collins) 190
Cranes, traveling and stram (Burnett) 191, 192
Cultivator (Ament) 142
Cuitivator and gang plow (Gulick) 350
Curtain fixtures (Hartshorn) 46
Damper and ventilator (Roynton) 298
Dead-center lift (Gorman) 541
Derrick, hay-stacking (Turner) 62
Device for plowing-in cornstalks; (Kilmer) 354
Diving mask (Hawkins) 386
Drill, self-feeding hand (Lyon) 207
Elevator and transporter, warp beam (Saunders) 246
Engine, double piston square (Root) 210
Engine, steam or gas (Welham) 403
Engine, steam; automatic stop motion for (Automatic Stop Motion Co.) 25
Flax dresser (McBrides) 66, 78
Flour bolt, duster and cooler (Boon & S.evensi 150
Fly trap (Lake) 382
Foot warmer (Hunt) 38
Forge, mist (Gould) 318
Forge, mist (Gould) 318
Forge, mist (Gould) 318
Forge, mist (Gould) 318
Fountain pen (Weller) 366
Friction weight for beams 246
Fruit basker, veneer (Beecher) 62
Funnel, liquor-saving (Lochman) 390
Fise for biasting (Walton) 162
Puse, longitudmal time (Wright) 234
Governor (Pickernig) 386
Hat and clothes bar (Fratt) 131
Hay carts, rigging for (Reed) 94
Hay cutter, nonparell (Doerksen) 166
Heater, feed-water (Lamon & Gaskill) 79
Heater, seed iron (Bleyer) 125
Hemp and flax dresser 78
Horse-shoe (Orittenden) 86
Horse-shoe (Orittenden) 86
Horse-shoe (Johnson) 222
Indicator, perpetual time (Fitzpatrick) 168
Lamp screen kerosene (Zahn) 190
Lantern, pocket (Minor) 398
Lathe for turning billiard balls (Johnson)

Lathe for irregular forms (Wisel) 223
Lathe for irregular forms (Wisel) 223
Lathe for turning billiard balls (Johnson)
143
Leg, artificial (Newbert) 275
Lunch bag, travelers' (Noyes) 339
Machine for applying stamps (Smith) 182
Mill shoe (Crouse) 94
Millstone plek (Stone) 70
Motor, hydraulic (Welham) 402
Nozzle, steam-spreading (Oyston) 291
Oil burner, kerosene (Egan) 322
Paper-cutting machine (Wells) 327
Parallel double-edging machine (Hayes
& Newman) 22
Pen rack and calendar (Holly) 178
Phosphate distributer (Cadwell) 54
Plow (Pierpont) 256
Plow, gang (Mitchell) 334
Power, method of transmitting (Welham) 402
Pump, disphragm (Howes) 102
Pump, lit and force (Smith) 303
Rack for photographs, negative registering 218
Rall, indented (Schleier) 322
Rain conductor (Rogers) 110
Rake, hand, mechanical (Rundlett) 63
Rake, hand, mechanical (Rundlett) 63
Rake, horse (Wallace & Carpenter) 30
Rake, revolving wheel (Warner) 118
Reversible car seat (Shoenberger) 374
Riffe, breech-loading (Roberts) 310
Rock-borer, rotary, and tunneling machine (Sweeney) 255
Roller sheaved, Shiding door 70
Rooft-borer, rotary, and tunneling machine (Sweeney) 255
Roller sheaved, Shiding door 35
Rufer, parallel (Gillette) 220
Sas-nell horse-power (Totman) 335
Serew-cutting innex (Baker) 54
Reparator, grain and seed (Rodes) 273
Reitee, school (Stagg) 302
Shoe-polishing chair (Harding) 182
Shovel, sifter (Porter) 14
Shovel and Sifter (Schaap) 307

Apparatus for mines and petroleum wells (Pease) 331

Arrangement for storing bay (Hinman) 236

Artificial limbs (Mark) 343

Attachment to Boilera (Riordan) 309

Auger, expanding hollow (Sargant & Co.) 358

Axle box (Shelley) 6

Ballot box, self-registering (McPherson) 239

Bandage roller (Sauborn) 227

Bed, spring (Mitchell) 108

Bellows, foot (Neumeyer) 127

Billiard and office (able, combination (Bradley) 166

Blower, acrovapor (Strange & Huntleys) 389

Bobbin (Saunders) 246

Boiler, steam (Bickerson) 51

Boi

"A 1" 206
A neat thing 270*
Abatis, rebel, at Petersburgh 256
Acid, pyroligneous, in chimneys 177
Agricultural crops of the country 33
Agricultural museum at Washington 101
Alr, compressed 35
"Albemaric," rebel ram, destruction of 287
Aluminum bronze for coins 257
Aluminum, manufacture of 5
American trade to China 33
American war, commentary on 22
Americans, a great country for 110
Ames gun, failure of 319
Ammonia, protection of 256
Ammoniacal gas as a motor, 143
Ammunition waste of 65
An "old fogy" 2" 6
Anaesthetics, new 197
Analine blacx 211, 228
Analine red. how to combine fat with 386
Annealing in closed vessels 463
Apparatus, self-acting, for steering ships 194
Apprenticeships, use of 50
A pump which cattle can work themselves 402
Aquaria cement 133
Armstrong's (Sir Wm.) present to Jen Davis 35
Arsenic poison 252
Art of observation 359
Artesian well in 8t. Louis 387
Artillery of the future 117
Asharagus a substitute for coffee 149
Atlantic telegraphs 264
Austrian gun cotton 320
Automatic regulator of the electric light
367

B
Balance of trade delusion 23

В

Balance of trade delusion 23
Balloons, the mo t plausible way of navigating 407
Bank deposits 87
Banks, nation and State, difference between 343
Baron Liebig's soup for children 116
Battery, a constant 112
Bearings, hot 87
Bed, spring 168
Bed-quilits, old, covering 165
Beehives, straw protection for 33
Beef, South Am., jerked 333
Beef, South Am., jerked 333
Beet sugar in Germany 17
Bells, manufacture of 163
Benzoin as an insecticide 356
Bessemer metal 291
Bessemer process, Mr. Mushet and the 115
Bessemer steel 256
Billiards, wonderful skill in 262
Birds of prey, to catch 144
Bituminous substance, new, from Brazil 178
Blackberries, the way to raise 134
Blackberries, the way to raise 134
Blackberries, the way to raise 134

Bituminous substance, new, from Braz 178
Blackberries, the way to raise 134
Blackberries, the way to raise 134
Blacking, directions for making 257
Blasting, improvement in 200
Blockade, is it effective 7 113
Blockade runners captured in 1864 52
Boiler explosions, my sterious 231
Boiler explosions, my sterious 231
Boiler explosions, my sterious 231
Boilers, small 183
Boilers, steam, preservation of 241
Boilers, steam, wear and tear of 338
Boilers, steam, wear and tear of 338
Boilers, tabular, and scale 228
Braker, car, experiment with 119
Bread-makers, French 2
Bread fermented, sweetness of 119
Rreech-loaders, Mr. Dooge on 19
Bricks, the patent stone 4
Bridge, steel girder 229
Bridge, steel girder 229

Bridge, steel girder 229
British army and navy 179
Brocade 30
Bothsho, a new enterprize in 354
Burglars 339
Burglars, English, mechanical skill of 223 Bureau of ordnance, report of the chief of 32

California currency, 263
Casop Nelson water works 246
Canol with a leaky bottom 177
Canals 505
Candlestick, a self-acting 210
"Cannel coal" 226
Camnon, breech-loading, trial of, in Russis 359
Cannon, new system for forging 50°
Carding, splinning and weaving, hand 69
Capillarity 476
Carpet factories, American 174
Carpet savesping 275
Cartridges, copper 236, 327
Cartridges, copper 326, 327
Cashmere goat, the 165
Cast iron, reducing, to steel 24
Cast iron, reducing, to steel 24
Caster oil, a new use for 59

Cement, a new rubber 340
Cement for rooms 63
Cement, water-proof 162
Chair, nursing 305
Chimney without a scaffold 196
Chimneys without a scaffold 196
Chimneys, pyroligneous acid in 196, 228
Chimney tops, the shape of 400
Chimese chronology 196
Chioride of barium against boiler incrustation 148
Cinnibar 229
Circumference of the ellipse 196
"Circumference of the ellipse 196
"Circumference of the ellipse 196
"Circumfocution Office" 312
Ctark on steam boilers 387
Clock, a curious 257, 340, 372
Coal asbest, effect of, on wood ashes 226
Coal ashes, value of 247
Coal-cuting machinery, hydraulic 177
Coal-ining invention 31
Coal trade of the United States 127
Coffee, a new substitute for 238
Collars on a shaft, how to shrink 63*
Commerce on the lakes 400
Compass, self-registering 270
Cone pulleys for given velocities 69
Confectionary, green, how to make 63
Conservation and correlation of forces 24
Copper cartridges, trial of 404
Copperly fruits and vegetables 165
Corks, revived 86
Corn cluitvation in the West Indies 47
Corn, damp 210
Corn how reaped in Brazil 319
Corn husk for paper stock 87
Corn, prospective demand for 200
Corn shellers wanted 112
Corn, tarred, for crows 273
Cornection from a noon mak 63
Cornespondence, editorial 68
Cotton 292
Cotton, Savannah 241
Cotton spinning, work on, wanted 4
Cotton spinning, work on, wanted 4
Cotton spinning, work on, wanted 4
Cotton supply restored 33
Counterfelts, how to detect 26
Crank motion, the 102
Croquet 328
Crucible clay deposit in Missouri 387
Curculios, how to detect 26
Crank motion, the 102
Curculios, how to detect 26
Crank motion, the 102
Curculios, how to detect 26
Crank motion, the 102
Curculios, how to detect 26
Crank motion, the 102
Curculios, how to detect 26
Crank motion, the 102
Curculios, how to detect 26
Crank motion, the 102
Curculios, how to detect 26
Crank motion, the 102
Curculios, how to detect 26
Crank motion, the 102
Curculios, how to detect 26
Cr

Dental Plates 116, 148, 212
Detergent, a new 241
Detergents 309
Dialysis, another application of 355
Diamonds 289
Diamonds, genuine, found in California
289
Dog fish for fuel 17
Drill chucks 375
Drills, standard twist 214*
Drops 179
Drunkenness, an English cure for 227
Dry printing 88
Dry printing of fractional currency[128
Dye, purple, from theine 337

E

Earth, center of composed of gold 388 Effect of the earth's cooling 133 Effects of the war on the industrial arts 375

Effect of the earth's cooling 133
Effects of the war on the industrial arts
375
Fggs, to keep 245
Electric light, invisible radiation of 321
Electric-light, machine 257
Electro-magnet, a new 147
Electro-plating, new method of 182
Embrining 2.5
Emery bed found 34
Emigration, rate of 356
Employment for disabled soldiers 86
Employment for disabled soldiers 86
Emgine, the French Ammonia 263
Engine, gas, new plan for a 100
Engine, steam 260
Engine, steam improvements in 215
Engineering, economical 158
Engineering schools 148
Engineering schools 148
Engineers, English 271
Engines, combined cylinder 374
Engines, marine 23
Engines, mare persoure 226
Engines, water, in Enrope 4
Engilish 'Nock-out' 256, 266
Engilsh operative, an, in an American
Factory 162
Expansion, Frof. Rankine on 7
Explosion, gas 71
Explosion, ag boiler 52
Explosion, for fine and an extracts from Helmbolts 98

F

Farmers' Club 164, 178, 30, 309, 227, 242.

20, 322, 335, 370, 350, 405

Fast firing 49

Leather belts 467

Leather belts 46

French weights and measures 133 Fruit-growing, profits of 261 Furnace doors, size of holes in 71 Furs, scarcity of 239 Fuse for blasting 162

Gas from petroleum 199
Gas, illuminating 295
Gass illuminating 295
Gass decided and illumination of a 228
Glass decided and illumination of a 228
Glass decided and illumination of a 228
Glass illumination of 246
Glass blowing, reminiscences of 161
Glass trade of the west 255
Glass blowing, reminiscences of 163
Glycerin, applications of 224
Glycerin for gas meters 199
Goosesiling's corn-sugar parents 149
Gold, cleap solvent for 327
Gold, cleap solvent for 327
Gold, secret plans for extracting 310
"Good time" coming 263
Good will 311
Goodyear patents again 19
Goodyear patents, expiration of 183
Goodyear extension case 163
Government expenses 399
Government exp

H

Healing power in various ratios 206
Heat and force in solar system 80
Heat, force on 55
Heat, latent from condensation 404
Heat, loss of, in the steam engine 180!
Heat, transmission of, through screens
340
Heat, waste—use of in kilns 332
Holes in glass 100
Homes for workmen 225
Hops, improved method of cultivating
49
Horse-chestnats 209
Horse-power 264
Hot beds 166
How to fall asleep 390, 372
Hydraulic cement 307

1

Ice, anchor 54
Ichneumon styland dusky vapor moth 131
Immente ore 302
Inactivity 119
Inauguration of a new soc ty 231
Incrustation powder swindlesiss, 380
Incubation 233
India-rubber 23
India-rubber 23
India-rubber, solution of 257
Interesting experiments, 322
Internal revenue of N. Y. City 84
Invention, field of, inexhaustible 151
Inventions desired in France 296
Inventions, small, demand for 165
Inventions desired in France 296
Inventions, small, demand for 165
Inventions, small, demand for 165
Inventions, small, demand for 165
Inventions, what can be done for 7
Iodine, a new source of 99
Iron and steel, browning 210
Iron castings, defective 55
Iren, cementation of, by carbon from gas retorts 149
Iron-clads, huge, English, launch of 342
Iron dish cloths 278
Iron detter, another 69
Iron manufacture, depression in 372
Iron manufacturers among the Africans 324
Iron sheet, turning 81
Iron smelting 324
Iron ship, the first 318
Iron, still thunce 126
Iron's 281
Iron's 281
Iron still thunce 126
Iron's 281
Iron's

J

Jeff Davis 294 Jewelry, cheap, manufacture of 312

K

Kerosene as a substitute for fish oil in tanning 228 Knowing too much 247

Lard, adulterating, with water 71

Lumber, improvement in manufactur ing 167 Lumber, seasoning of 4, 82

M

Machine molding in lead mines 241
Machinery, abuse of 199
Machinery, inefficient 343
Machinery the great missionary 231
"Machinery the great missionary 231
"Magnesium, explosive compound of 341
Magnesium, explosive compound of 341
Magnesium light 276
Magnesium light for dyers 117
Magnesium light for light houses 326
Man englies 372
Manna, Asiatic 211
Mannfacturing, extension of the Bessemer 402
Maple sugar season in Vermont 369
Matches 28
Matches 188
Matches 189
Matches 28
Matches 28
Matches 28
Matches 38
Matches 402
Machinery 197
Mechanical proferm phosphorus 65
Matches, Japanese 131
Matches 189
Mechanical proferm 72
Mechanical proferm 72
Mechanical proferm 72
Mechanical proferm 73
Mechanical proferm 74
Mechanical proferm 75
Mechanical proferm 84
Milk action 126
Metric system 66
Microscopes, improvement in wanted 494
Microscopes, improvement in wanted 494
Milk business, N. V., 84
Milk, condensed 53
Milk baswess, N. V., 84
Milk, condensed 53
Milks, heavy rolling 374
Mineral, a rare 234
Mining by machinery 273
Mining phenomenon 1,9
Model houses 263
Monutors, light-drait, altering 15
Mordant, new 49
Mostet, Japanese 131
Museum of natural history 135
Museum of natural history 135
Museum of natural history 135
Mushet on cast iron 304
Mushet, Mr., letter irom 146
Mushet on cast iron 304
Mysterious boiler explosion, another 372

Nails, American in British Provinces 85

Nalls, American in British Provinces 85
National debt, the 245, 365
National defenses 211
Navional monument to Mr. Lincoln 357
Naval discipline 279
Needles, sharpening, by electricity 102
Nettle, the common, myellow fever 211
New-year's gitt, a sensible 71
New York machine shops, condition of 99
Newspaper agency business 84
Nitro-benzol, detecting, in oil of bitter almond, 17
Notes on new discoveries 309
Nut crackers, the Yankee 265

Oil, boring for, near Chicago 36
Oil car, rotary 143
Oil, lubricating 311
til stock exettement 3
Oil wells. Iffe at the 192
Oils, vegetable fatty, action of the air on 32
Oil sells. Iffe at the 192
Oils, vegetable, sources of 143
Oil regions, guide book to 196
Oil regions of Pennsylvania 253
Oil possite motion of the earth at the poles 213
Orchards 250
Ordnance and armor 118
Ordnance company, the Blakely 227
Ordnance, heavy, material for 135, 164
Our calamity 255
Our shipping 260

Paper, ancient 329
Paper carriages 209
Paper trom cane 72, 162
Paper on damp walls 324
Paper pipes, bitumenizedP41
Paper, tracsing, 341
Parer tigues and mortars in Porter's expedition 17
Passages from the life of a philosophical machinist 336
Patent of the life of a philosophical machinist 336
Patent claims 8, 24, 40, 56, 73, 88, 104, 120, 136, 152, 168, 184, 240, 246, 232, 248, 280, 290, 296, 343, 329, 340, 320, 546, 332, 468, 409, 410
Patent extensions, debate on 193
Patent laws, Canadian 113
Patent laws, Canadian 113
Patent laws, amendment to the 87, 199
Patent laws in England 78
Patent office, the 765
Patent offic

stroleum in Chemung valley 232
stroleum, raising 22
stroleum, raising 22
stroleum refinery, visit to a 112
stroleum stock companies 19
troleum stock companies 19
troleum, surface indications 23
troleum for gas 402
noticapapite from 8 178
orography—the Simpson type 272
refologiests, interesting to 26
no-making 215
resource and animals of petroleum rocks
32

Plants and animals of petroloum rocks 32
Plants from cuttings 257
Plants, carious, of California S71
Plants, undying 168
Plaster of Paris 383
Plow, reaper and mower wanted 129
Plowing, steam, in England 400
Preumatic dispatch and telegraphy 15
Pneumatic railway, subterrancan 182
Pollucal economy, common sense 307
Polytechnic Association, 33, 48, 64, 80, 130, 226, 242, 261, 294, 338, 352, 373, 405
Pomade divine 68
Pork, raw, and tape worm 180
Porter's (Admiral) report on the monitors 50

tors 55
Potash directly from the rocks 263
Prizes at exhibitions 295
Problem of two wheels 116, 132, 165, 180.
Prompt action 228

t rotion "28" lers on the mechanical principles the action of 537 Carver's 3.7 freezing 100 rods, broken, to olfor drawing 63° ing machinery 150 s, ship's 233 red and drilled holes in plates 35 greeous acid in chimneys 116, 148

Quicksilver, now to clean 370

R

Raceways, deep, advantage of 53
Railroad disasters, causes of 199
Railroad under Broadway 117
Railway trains, new system of regulating 276
Rain drops, how to count 192
Rain, what is an inch of? 145
Raisins, California 16
Rake, revolving horse 164
Ram, the last rebel 335
Raw pork and tapeworm 212
Receipts, systical SS, 129, 224
Receipts, useful 401
Red of sorgho 324
Report of ordinance department on Stevenson's caroine 115
Respiratory Apparatus 5,2
Retrospective;
Rubbard for domestic wine-making 245
Rifles, English breech-loading 2,7
River courses 336
Rollers under slide valves 84
Roolers grafting 357
Rubidium, preparation and properties of 14
Rumford, Count 147

Muhidium, preparation and properties of 14
Eumford, Count 147
Ramford's (Count) discovery that heat is motion 114
Ruinskorff coil, the 6,69
Russian epidemic 289
Rutherford's method of exploding torpedoes 372

Safes 311
Safes hot, opening of 391
Saleratus, effect of, on the teeth 200, 292, 308
Salmon, acclimation of, in Australia 65
Salt as a fertilizer 327
Sand rocks, "the three" 256
Scale, deposition of, in marine bollers 16
Scale in bollers, remedy for 161, 179
Science, new applications of 325
Screw-cutting, rules for 244
Screw threads, report of Franklin Institute on 146, 151
Screw propulsion, facts concerning 212
Sewell, William, death or 342
Sex 233
Sexes, production of the 67

ewell. William, death or 342
exes, production of the 67
helis and beaver skins for money 161
helis, facts concerning 163
herman's army, review of 333
hips, composite 290
hips of war, impregnable 167
soe blacking 164
berian plague 275
emen's furnace at Pittsburgh 298
gnificant fact, a 183
lk worms for France 14
iver, extracting, from lead 274
de valve, pressure on 151
ovenly workman-hip 212
ov and sure 161
hithsonian Institute, destruction of,
by fire 85
alis, how to cook 65
ov skates in California 271
hp, cheap 183
ap, use of, in boller incrustations 303
ar disk, intensity of action of different parts of 63
ar pump 235
in worm, practical plan for destruction
182

Span worm, practical plan for destroying

worm, practices and the process of the second secon Steam carriage of the olden time 133
Steam carriage of the olden time 133
Steam cylinders, boring 167
Steam, expansion of 3
Steam in France 176
Steam machinery of the navy 98
Steam on common roads 3; 177, 250
Steam, Frot. Rankine on the density of
48

Steam, Prof. Rankine on the density of
48
Steamers, paddle, plan for accelerating
speed of 46
Steamship City of Boston, new English
144
Steel 329
Etcel, constitution of 230
Steel, hardening and tempering 69
Steel, hardening in oil 130
Steel, hardening in oil 130
Steel, high and low 160
Steel, high and low 160
Steel, high and low 160
Steel, how thin it can be rolled 145
Stel, manufacture of, in Pittsourgh 207
Steel, thin, wanted 225
Stel, in animating through the earth 150
Stone at falling through the earth 150
Stone and, the 345
Strawberry culture 227
Strikes 217, 279, 231
Strong room, a 230
Subsidence of the earth's cruat 327

Successive species, law of 64 Sugar cane 329 Sugar, glucose, Mambro's improvement in manufacture of 21 Sugar-making in Cuba 18 Sulphur, plasticity of 278 Sword-revolver 22 System 215

r—the way obtained 239

ar—making in New Hampshire 65

assel, the cultivation and use of 195
degraph, the, and the weather 100
degraph cable, testing the 401
degraph cable, completion of 501
degraph cable, completion of 401
degraph cable, completion of 501
degraph cable, completion of 501
degraph cable, completion 55
degraph cable, completion 501
degraph cable, completion 601
degraph cable, cable, completion 601
degraph cable, completion 601
degraph cable, cable, completion 601
degraph cabl

U Utility, what is 39

Vaccination from the cow 127
Valves, balanced slide 103
Varies, manufacture of 243
Verestables 277
Veivet factory to be started 354
Ventilation of an English colliery 175
Vessels, resistance of, in water 323
Victory, the great 247
Virtue of application 370

Water as fuel 343
Water baths in cooking 238
Water baths in cooking 238
Water burning 344
Water motor, English 294
Water propeller, 299
Water ram wanted 340
Water sapply of London 84
Weights on railways 275
Weil, the 10wing, at Pitt Hole 79
Well-boring machines at school of mines
Philadelphia 131
Western correspondence 335
What a great thing an army is 119
Willow, machine for peeling 340
Winslow, J. F., and the Bessemer process 144
Wire rope, steel 19
Wire works, English, a visit to 16
Wood-working machinery wanted 132
Wood, cleaning, with glycerin 324, 3;2
Wood from pine trees 113
Work of different countries 256
Working and thinking 225

PATENT CLAIMS.

PATENT CLAIMS.

Addressing machine 230
Adhesive fastening for papers 104
Air, apparatus for eirbureting 40, 122, 129, 200, 218, 266 (2° 230, 314, 331.
Air-compressing apparatus 282
Air-cooling apparatus 282
Air-cooling apparatus 378
Alarm, burgiar 381
Alarm for railroads 286
Albums, construction of 249
Alumium with vulcanite, combining 120, 157
Am igam, process for refining 216
Ambulance 346, 378
Amalgamator 8, 153, 169, 379
Anchor tripper 28, 346
Angle protractors 10
Aniline, method of preparing colors from 201
Aniline, method of preparing colors from 201
Aniline, method of preparing colors from 201
Aniline protractors 10
Aniline, method of preparing colors from 201
Aniline, method 201
Aniline, method

B Bag, feed 229
Bag, spaper 296, 392
Bags, paper, machine for folding 89
Bag, travelling lanch 282
Bag, bolder 1st, 389 holder 154, 293 , holding and filling 409 nee 232 spring 169, 409 meter 337
al for holding oils 232, 283
el heads, machine for cutting 154
el heads, machine for cutting 154
el heads, machine for cutting 44
el packer 266
els, rolling device 293
els, bungs of 362
els, bungs of 362
els, bungs of 362
els, machine for lining 57, 361
els, machine for making heads to
15, 408
els, pack 164
els, machine for making heads to 1:5, 403 Barrels, metallic head for 9 Barrels, oil, composition for lining 184.

392 Barrels, oil, preventing from leaking 57. Barrels, petroleum 154
Barrels, petroleum, Indog 283, 315, 320
Barrels, rendering impervious to oil 20
Basket, fruit 105, 331
Basket, fowers 498
Basket, ladies' work 24
Baskets, machine for forming 24, 315

Baskets, protector for 249
Battery, galvanic, 297
Bayonet attachment 251
Bedstead fastening 90
Bedstead, softa 315
Billistead indicator 57
Billisted indicator 57
Bil

Boiler, rotary, for manufacture of paper 57
Boller, steam 24, 41, 74, 106, 120, 154, 249 (2), 350, 577
Boiler tubes, device for stopping leaks in 25
Boiler tubes, rings for do. 25
Boiler tubes, rings for do. 25
Boiler tubes, rool for cutting off 393
Boiler, tubular 9
Boiler-feeder 255, 263
Boilers, furnace doors for 138
Boilers, method of removing incrustation from 73
Boilers, toel for scaling tubes to 136
Boilers, steam, composition for removing scale from 255, 376, 355, 376
Boilers, steam, feed-water heater for 121
Boiler, steam, low water signal for 27, 253

Boller, steam, low water signal for 27, 283
Bollers, steam, preventing scale in 360
Bolt, carriage 226
Bolt for doors, 187, 216
Bolt, shutter 40, 88
Bolting mill 42
Bolts, machine for drawing, by hydrauhe pressure 42
Bolts, machine for heading 139
Bolts, inanufacture of 249
Bolts, stay and other, tool for cutting off 186

Bolts, machine for heading 139
Botts, manufacture of 249
Botts, stay and other, tool for cutting off 185
Bonnet binding 1051
Book covers, machine for making 137
Boom and gar joints 25
Boot and shoes, machine for securing soles to 248
Boots and shoes 41, 232, 265, 313, 345, 409
Boots, pattern for cutting 329
Boots, device for pulling on 361
Boot-lack 394
Boot leg 346
Borer for wells 185, 315 (2)
Boring apparatus 346
Boring tools, coupling shafts of 314
Bottle, Siphon 345
Bottle stopper 239
Bottles, closing 203
Box, blacking 201, 331
Box, grape 409
Box for transporting plants 266
Box, lunch 344
Box, thread and needle 216
Boxes, machine for manufacture of, sheet metal 352
Boxes, machine for manufacture of, sheet metal 352
Boxes, material for making 74
Boxes, paper, construction of 234
Boxes, sheet metal 345
Boxes, stuffing, lubricating the packing of 229
Boxes, tool for opening 362
Brace, ratchet 288
Braiding machines 239
Brake 25, 40, 74, 83, 137, 134, 185, 202, 249, 317, 408
Breast-pads, ladies' 57
Brewernes, coolers for 201
Brewing, process for 232
Bridge, 376, 378
Brick, kiln for burning 331, 409
Brick machine 11, 83, 90, 107, 121, 138, 202, 225
Brick, molding and pressing 217
Broilers, or toasters, wire 231

irick, kiln for burning 331, 409
irick machine 11, 88, 20, 107, 121, 138, 202, 225
arick, molding and pressing 217
iroliers, or toasters, wire 231
broom 185, 360
Broshes for cannon 152
Brush, hydraulic 106
Brush, hydraulic 106
Brush, hydraulic 106
Brush, whitewash and handle 73, 376
Bucks and frame 233
Bucket car 314
Bucket, velghing 57
Buckle 136, 217, 320, 335, 409
Buckle attachment 392, 408
Buckle, belt 314
Buckle, belt 314
Buckle, larness 314
Buckle, larness 314
Buckle, larness 314
Buckle, larness 314
Bullets, machine for lubricating 360
Burner, cas 360 (2)
Burner, gas 360 (2)
Burner, gas, regulator for 253
Burner, gas, regulator for 393
Burner, gas, regulator for 393
Burner, day, regulator for 253
Burner, day, regulator for 254
Buttor for regulator for 254
Buc

Jage, bird 169

s, bird 169 p, recentric 25 adars, perpetual 42 pers 10, 55 p kit 10 sers stand, photographic 138 , frant 187, 206 o, fruit 187, 206
n, ceil 25
n, seil acading 25
n, seil acading 25
ns or boxes, medal 377
ns, psint, cars for 107
noles, molded, manufacture of 107
nonon, many barreled 25
nonon, repeating 188
nonon, repeating 188
nonon, repeating 188
ars, boxes railway, starting 346
ars, horses railway, starting 346
ars, horses railway, starting for 202
ars, railroad, brake for 10
ars, railroad, construction of 136
ars, railroad, ronning gear of 201
ars, railroad, mode of propeiling 361
ars, railway 250

Car, railway seats for 41 Car seat, railway 282, 409 Car-replacer 9 er 9 prophision of 393 steam railway 90 e 186 e 186 achines 282, 331, 393 achines means of feeding wool, Carding machines, means of feeding wool,
Ac, to 378
Carriage 286, 282 (2)
Carriages, double-tree for 216
Caster for furniture 232
Carriage, railway 259
Carpet stretcher 137, 236
Carpenters' squares, machine for indicating 107
Carridge 56
Carridge box 8
Carridge on special arms 281
Cartridge for small arms 281
Cartridges, compressing, around bullets 578
Carridge for small arms 281
Cartridges, machine for attaching balls to 383

dees, metallie, machine for cupping 6
for preserving animal and vegetable ibstances 41
machine for making heads for 186
for preserving beer 89
r, furniture 249, 468
r for furniture 249, 468
r for furniture 249, 468
r for furniture 34, 133
, mode of taking 249
tental bandage 10
stanchion 40
nt, asphaltic 218
cosl 24
213, 408
213, 408
adjustable 53
and cradle 314
and coupling, railroad 360
, railroad, 201
s, railroad, 201
s, railroad, 201
s, railroad, 201
s, railroad, 101
s, railroad, 201
s, railroad, 202
s, railroad, 203
s, rail

cleaning 281
x, conductors 330
nachine for cutting card of 187
oning machine 595

Chimney 298 (Chimney 298 and of 187 Chimney 298 313 (Chronometer Escapement 185 (Chuck, self-centering 187 Chuck, universal 297 (Chuck, universal 297 (Chuck), u

Churns, mode-af operating 394
Churn, pneumatic 315
Cigar 394
Cigar machine 188
Cigars and tobacco, show case for 408
Cigars, machine for manufacturing 56
Cigars, manufacture of 203
Cigars, manufacture of 203
Cigarettes 216, 248, 331
Cigarettes, apparatus for filling 24
Cigarettes, apparatus for filling 24
Cigarettes, machine for making 395, 408
Ciasps, for cho hing 249
Clasps, machine for making, from sheet metal 315
Clay, damp, mode of pressing 331
Clay, process of preparing, for potters' use 41
Clock, calendar 169, 281
Clock, globe 315
Cliock, globe 315
Clioch, flocked 107
Cloth, trings, machine for making 408
Clod crusher 40
Cloth, flocked 107
Cloth, water-proof, Dyeing, etc. 107
Cloth, water-proof, Dyeing, etc. 107
Cloth, preparation of, for bleaching 200
Clothes pin 266
Clothes pin 266
Clothes pryer 106, 152, 187, 292, 345, 408
Clothes-drying machine 9
Clothes bryinger 347, 347
Coal breaker 257, 409
Coal dod, etc. 379
Coal mining machine 73
Coal sitter, portable gravitating 104
Coate value and parameter and coate with inner sleeves 90
Coffer dam 104
Coffer can 104

five settler 298
min 297
min, deodorizing 281
min handle 296
min paper 27, (122(2), 136, 378, 408
min paper, apparatus for folding 185
min ladies' paper 120
min paper, machine for making 25,
136

Collars, paper, machine for making 25, 136
Collars, paper, machine for stretching 138
Collars, paper, turn-down enameled 89
Collars and cutts, water-proof 409
Collar and cutts, water-proof 409
Comb 73, 104
Comb 13, 104
Comb 600
Combostion, system of supporting 184
Composition, system of supporting 184
Composition for cleaning marble 281
Composition for ceaning marble 281
Composition for coating oil barrels 187
Composition for coating oil barrels 187
Composition for preparing phobons 290
Composition for preparing phonos 290
Composition for preparing phonos 290
Composition for preparing phonos 290
Composition, rosting 153, 297
Composition, rosting 153, 297
Composition, rost, fire proof 280
Composition for proper proof 280
Composition for proper p

Sucting wires, coupling 375 verting rotary into reciprocating mo tion 42

tion 42
Coupling belt 121
Coupling, car 9, 40, 41, 74, 195, 136, 153, 185, 217, 249, 298, 318, 393
Coupling for carriage shafts 9
coupling for shafting 297
Coupling, pipe 170, 392
Coupling shafts for boring tools 363
Coupling, shaft, for carriages 259
Coupling to thills 5.3 ker 9
apparatus 331
apparatus 331
apparatus used in breweries 170
opes, etc., machine for making 91
ni 250 nii 250 saker 345, 393 561, 393 tretcher, field hospital 9 bulea hoop lock for 281 gin 329 gin 329 gins, roller for 40 rry gatherer 188, 395 self-rocking 187

Franc 12) Frank-Wrist connectors 313

Cranks, attaching, to machinery 362
Crayons, composition for 9
Crib & craile 104
Crapper 37
Centich 48, 239, 345
Cultivator 22 (2), 40 (3), 41, 42, 56 (2), 57
(3), 74, 83, 105, 137 (1), 185 (3), 168, 232, 253, 249, 252, 289, 288, 314, 329, 339, 545, (2) 353, 393, 784
Cultivator and harrow 121
Cultivator and harrow combined 90
Cultivator, hand 217
Cultivator, tech, for 185
Cultivator tech, hanging 232
Cultivator, tech, for 185
Cultivator tech, hanging 232
Cultivator, tech, for 185
Cultivator tech, hanging 232
Cultivator, wheel 169
Cultivator, wheel 169
Cultivator, wheel 169
Cultivator, wheel 169
Cultivator, bread 89, 238, 394
Cutter, bread 30, 238, 394
Cutter, bread and ment 375
to Cutter, button-hole 90
Cutter, ment 41, 42, 362 Cutter, button-hole 20
Cutter, ment 41, 42, 362
Cutter, ment 41, 42, 362
Cutter, stock 41
Cutter, straw 73, 89
Cutter, straw 73, 89
Cutter, straw, and feed mixer 256
Cutter, tube sheet 378
Cutter, vegetable 89
Cuttery, table 122, 252
Cylinder, picking, for disintegrating machines 122

D

Damper for flues 9 Damper, stove-pipe 89, 185, 249, 281, 383 (2) Damper, ventilating and check draught

Damper for flues 9
Damper, stove pipe 89, 185, 249, 281, 383 (2)
Damper, ventilating and check draught
121
Dead center lift 104
Derrick and horse power 58
Desk 376
Desk and seat, 232, 249
Desk and work table, combined 233
Detector, low-water 106, 409
Device for producing motive power by
rise and fall of the ide 57
Device for steering boats from other
boats 594
Dexters, store 26
Damonds, glaziers', adjusting 330
Dies, screw-cutting, stocks for holding
362
Dice, tool for marking 314
Digger, rotary 378
Digging machine, 57
D seases, treatment of 154
Ditching machine 266
Doors and windows—mode of rendering
water-tight 233
Docks, Construction of 106
Dock, flifting 110
Door-bell 499
Dock, lifting 110
Door-bell 499
Dock, lifting 110
Door knobs, fastening, to their shanks
379 (2)
Door knob, rose for 379
Douzh, apparatus for raising 233
Dratt bar, railroad 249
Drawing frame rolls 331
Drawing machine, centrifugal 345
Dredge, oyster, winder for 216
Dredging machine, centrifugal 345
Dredge, oyster, winder for 216
Dredge, oyster, winder for 216
Dredging machine, centrifugal 345
Dredge, oyster, winder for 216
Dredging machine, contribugal 345
Dredge, oyster, winder for 216
Dredging machine, contribugal 345
Dredge, oyster, winder for 216
Dredging machine, contribugal 345
Dredging machine, contribugal 345
Dredging machine, contribugal 345
Dredging machine 153
Dress protector, ladies' 120
Drill 101, 217
Drill grain 154, 202, 393, 408
Drill, pneumatic 183
Drill, pneumatic 183
Drill, seed 250, 394
Drill, rock 188, 315, 360, 361
Drill, seed 250, 394
Drill, rock 188, 315, 360, 361
Drill, seed 250, 394
Drill, rock 188, 315, 360, 361
Drill, seed 250, 394
Drill, se

Earthenware, machine for making 233
Eaves trough 104
Eccentric, adjustable 187
Egg boiler 296, 409
Eggs, method of preserving 255
Eictor, oil 202, 217, 2 2, 233, 250 (2), 236
(2), 297, 298, 303, 303, 304, 488
Ejector, for steam boiler furnaces 409
Ejector, fuil 339
Ejector for oil wells 57, 183
Ejector for steam boilea furnaces 409

r, hay 90, 331 r, water 138 rs, water, chain for 315 air 393 carbonic acid 200 carding, doffing apparatus for

Engine, air 3:35
Engine, carbonic act | 200
Engine, carbonic act | 200
Engine, cording, doffing apparatus for 105
Engine, cording, waste-saving attachment to 280
Engine, fire 120
Engine, fire 120
Engine head light 232
Engine head light 232
Engine, hot air 104, 136, 136, 346
Engine, hydrostatic 201
Engine, hydrostatic 201
Engine, rotary 120, 162, 183
Engine, rotary steam 330, 346
Engine, rotary steam 330, 346
Engine, steam 153, 169, 185, 201, 296, 297, 629, 346, 347, 360, 395
Engine, steam, automatic stop motion for 282, 283 (2)
Engine, steam, cut-off for 90 (2)
Engine, steam, cut-off valve gear for 217
Engine, steam, valve for 55, 234, 249
Engine, steam, valve for 55, 234, 249
Engine, steam, valve gear for 200
Engine, steam, valve gear for 200
Engine, steam, valve gear for 200

e, steam, valve gear for 290 e, v. brating piston 293 wing, bank note 346 ope, letter 216, 313 clune, manufacture from fibers of

217
Traver 90
tvaporator 330, 377
tvaporator 330, 377
tvaporator 330, 377
tvaporator 330, 377
tvaporator, cave juice 218
tvaporator, sorghum, 232, 376, 377
Excavator 363
Excentric adjustment 121
Excentric adjustment 121
Excentric adjustment 236
Extractor, sediment 236
Extractor, stump 103
Extractor, stump 104
Extracts, apparatus for making 24, 394
Extracts, apparatus for making 24, 394
Extracts, apparatus for making 24, 394
Extracts, made of obtaining 201
Eye water 153

Fabric, claste 185
Fabric, water-proof 170
Fabrics with butto-holes, mode o
weaving 280
Fagots, construction of 234

Fanning mill 42
Fastener, bag mouth 169
Fastener, key 120
Fastener, key 120
Fastener, sash 133, 377
Fastener, sash 133, 377
Fastener, sash 133, 377
Fastener, sash 133, 377
Fastening, bland 399
Fastening for harness 299
Fastening for harness 299
Fastening sashes 136, 347
Fastening, sames 316, 347
Fastening, sames 316, 347
Fastening, sames 282
Fastening, shoe 282
Fastening, shoe 282
Fastening, shier 545
Fastening stair rod 297
Fastening shier 545
Fastening stair rod 297
Fastening shier 545
Fastening stair rod 297
Fastening shier 545
Faste Femce wire 57
Fertilizers 157
Fertilizers, distribution of 250
Fertilizers to growing plants, improvement for distributing 408
Fertilizers to growing plants, improvement for distributing 408
Fertilizers to growing plants, improvement for distributing 408
Fertilizers to growing 408
Fertilizers process of removing resinous substances from 234
Fifes and flutes 315
File blanks, machine for ferging 57
File-cutting machine 168, 201
File, paper 50
File, water 183
Fire alarms 163
Fire alarms 163
Fire arm, breech-loading 9, 25, 40, 42 (2)
58, 103, 154, 183, 203, 218, 268, 250, 282, 283, 297, 346, 362, 363, 393, 395
Fire-arms, breech-loading, cartridge retractor for 120, 184
Fire-arm, breech-loading, rifling 58
Fire-arm, breech-loading, method of converting muzzle into 90
Fire-arm, capsule for preventing soiling of 299
Fire-rrms, carridge retractor for breech-

Fire-arm, breech-loading, method of converting muzale into 30

Fire-arm, capsule for preventing soiling of 299

Fire-rims, catridge retractor for breech-loading 489

Fire-arms, expanding tompion for 26

Fire-arm, magazine 8, 10, 25, 71, 73, 153, 22, 449

Fire-arm, magazine breech-loading 122

Fire-arm, magazine breech-loading 122

Fire-arm, magazine breech-loading 122

Fire-arm, magazine breech-loading 122

Fire-arm, magazine breech-loading 129

Fire-arm, precussion cap holder for 249

Fire-arm, rear sight base 89

Fire-arm, revolving 89, 20, 120 (2), 169, 170, 265, 345, 347

Fire-arm, revolving, cylinder pin of 345

Fire-arm, revolving, cylinder pin of 345

Fire-arm, safety device for locks of 10

Fire-blace 297

Fire-blace 297

Fire-place 297

Fire-place, moveable 250

Fish-hooks, machine for making 184

Fishing-line sinkers 152

Fias, machine for cleaning 315

Flax, machine for gathering, etc. 393

Flax, machine for spinning 285

Floor covering 74

Flour boit 265

Floor, preparing for preparation of 121

Food, preparing and preserving 11

warmer 186, 282
c 295
c 296
c, bincksmith's 201
ce, bortable 27, 13
ing apparatus 73
t, hay 233
t, hay-elevating 26, 90
t, horse hay 8, 90, 138, 152, 185, [2)1,
378, 379
t, wire, for toasting 120
ottain pen 297
me, roving, 154
me, roving, flyer for 217
mes for portable houses 41
mes, oval, machine for jointing 121
it, etc. preserving 41
it box 57
it gatherer 247, 233
it knife and nut pick 409
it, method of preserving 186
it picker 283
t, artificial 73, 74, 281, 282
and 121
med speak corrugated 106

nmel 121
nmel spout, corrugated 106
urnace 5-7
urnace, boiler 187, 249, 329, 394
urnace, boeling 187, 249, 329, 394
urnace, heating 170
urnace, hot air 105, 238
'urnaces, casting grate bars for 105
'urnaces, grates for 41, 499
Fuse, blasting 41, 331
Fuse, safety 24

Gage, carpenter's 74, 261 Gage, steam 315 Gage, steam pressure 40, 42, 377 Gage, water, for steam generator 57 ater, for a cards 209, 361 at measuring 42 apparatus for manufacture of 378 apparatus for manufactu Gas, carbonic acid, generating 265
Gas, furnace for burning 154
Gas-heater 158
Gas, illuminating, apparatus for the manufacture of 157
Gas, illuminating, manufacture of 73
Gas, instrument for lighting 255
Gas, purification of 259
Gats, 105, 217, 229
Gates, automatic folding 57
Gates, construction and hanging of 185
Gates, farm, hanging and latching 297
Gates, flow, for mill-dams 216
Gates, lock, device for raising and low-cring 259
Gates, took device for raising and low-cring 259
Gates, mathew of the 259
Gates, took of the 259
Gates, mathew of raising 57
Gags, furnits vaive 254
Generator, steam 107, 233 (2), 329
Glass, manufacture of 56
Glass, method of preventing corrosion of 250

Globe cock 514
Globe for fishes 201
Gloves, kid. dyeing 236
Glucase and white lead, manufacture of 324
Glucase, manufacture of 163
Gold, apparatus for extracting 23
Gold and silver, process for separating 216
Gold and silver, process for separating 216
Gold and silver, process for separating 216

Tild and silver, process for separating Tild Gold-washer 184
Gold-washer 184
Gold-washer 195, 25, 00, 249, 330
Grain bands, device for securing 315
Grain binder 58
Grain conveyor 226
Grain dryes 8
Grain for distillation, process of preparing 42, 207
Grain, leveling 233
Grain, inveling 233
Grain, inachine for builing and graining 137
Grain thrashing and separating machine 27

Grain thrashing and separating machine 27
Graining instrument 282
Grape wire support 297
Grate 74, 378
Grate bars 217
Grate, 47, 378
Grate, 570

Hammer, automatic 58
Hammer, drop 201
Handles, casting coffin 499
Harbor obstruction, method of removing 11
Harmonium 248
Harmoss 317
Harriess snap 153, 201
Harrows and roller combined 248
Harrow and roller combined 248
Harrow and roller combined 248
Harrows and seeder 73
Harvester 10, 26, 56 (2), 73 (2), 105 (5), 107 (9) 157, 138, 133 (2), 154, 184, 242, 217, 249, 252, 339, 345, 360, 3, 6, 378
Harvester, bean 120, 251
Harvester, combined rake and seed for 22
Harvester, combined rake and seed for 22
Harvester, combined rake and seed for 22
Harvester, rake for 169
Harvester, rake for 169
Harvester, raking attachment to 25 (3) Harvester, raking attachment to 25 (3) Harvesters, guarding ars for 345
Harvesters, guarding attachment to 25 (2) Harvesting and seeding machine, frame for 10
Hat 377, 384, 409
Hat bodies, machine for napping 169
Hat bodies, machine for rateching 169
Hat sand bonnets, fabric for 169
Hats, machine for pressing 21
Hats, machine for printing 313
Hats, printed telt 280
Hay, spparatus for balling 57
Hay, cutting and pressing 392
Hay, machine for raking 185
Hay, machine for raking and loading 203
Hay machine for raking and loading 203

y loader 40, 105
y, machine for preparing, for baling 232
yy, machine for raking 185
yy, machine for raking and loading 203
y spreader 89, 298, 376
y wagons, loading and unloading 57
and dress, waterfall 218
atter, feed-water 299
atter, gas 26, 297
atter, portable, for liquids 185
atters for buildings 123
atting and fuel device 293
el-pollshing machine 188
el-trimming machine 188
el-trimming machine 282
ive 206
m ing guide 330 (2)
imp, preparing 314 (2)
inge, shutter 121, 3.63
inby horse 121
g tamer 282
instingjapparatus 121, 189, 360, 362
insting apparatus, steam 317
initing machines 88, 233, 346, 333
iok, chain 266
ioks and eyes 89
iok, praning 391
iok, releasing and retaining 138
iok, seasing and retaining 138
iok, shap 185, 345, 347
iok, tackle 282
iok, tobacce 217
iops, machine for riving 132
iops, process for obtaining condensed
extract of 218
orse fastener 409
orse leg fender 394
orse power 10, 75, 299, 206, 330
iorse-shoe, calk 121, 299
ione-shoe, calk 121, 299
ione-shoe, calk 121, 299
ione-shoe, machine for making 26, 231
iorse-shoes, machine for making 26, 231
iorse-shoes, machine for making 26, 231
iorse-shoes, machine for boring 314
ibbs machine for boring 314

cs, device for cutting and shaving 136 cs, machine for leveling 266 cs sandal 186 i 180 ding fibrous materials 163 ser for hose, etc. 1;0 low water 265 steam pressure 250 time, for railroad trains 201 br 378 well 321 runeat for curing piles 314 runest for training the muscles in arting 202 lator for telegraph 200 , composition and manufacture of 1700, short, machine for cleaning 249 Iron, short, manufacture of 138, 169 Iron, soliering 377 Iron, size, furnace for finishing 202 Glass, method of preventing corrosion from the first Glass rack, photographic 26 Glass ware, sivered, manufacture of 37 from the first from t

Iron and steel, manufacture of 299 Ivory, machine for cutting 314

Jack for pegging boots 153
Jack for vessels sails 265
Jack, hiting 170
Jacquard for weaving 216
Japanning, apparatus for 361
Jar, boring 373
Jars, bottles, stopper for 347
Jar for oil tools 377
Jar, fruit, 346, 351
Jar, fruit, stopper for 265
Jar, preserve 25, 216
owel case 23/
ewelry, machine for ornamenting 351
Jb-sail, device for working 26
ournal box 202

Labels, adhesive 154
Ladder, extension 90, 185, 201, 403
Ladder, irrait 185
Ladder, orchard 105
Ladder, orchard 105
Lamp 40, 54, 90, 91, 153, 168, 187, 202, 239,
331 (2) 334
Lamp burner 216, 329
Lamp chimney cleaner 9
Lamp chimney, bandle for 120
Lamp, caol oil 238
Lamp for burning oil 250
Lamp for burning oil 250
Lamp for burning oil 250
Lamp, and gus stove, coal oil 90
Lamp, hanger for 120
Lamp, bydrogen 232
Lamp, oil 74
Lamp posts, street gas 40
Lamp, shade 10, 187, 330
Lamp, shade 10, 187, 330
Lamp, shade bolders 237, 376
Lamp wick, device for trimming 40
Lamps, mode of suspending burners for 186
Lamps, street 184
Lance for killing whales 152

Lard, apparatus for conting 133
Lard, apparatus for stirring and cooling
283
Lard, machine for separating, from
tanks 1.0
Lasting machine, toe plece for 137*
Latch 185 (2, 346
Latch, knob 394
Lathe chuck 378
Lathe chuck 378
Lathe chuck 378
Lathes for buildings 74
Lead, white, manufacture of 186
Leather, articles of, mode of economizing manufacture of 104
Leather, camposition for blacking 377
Leather, machine for cutting 361
Leather, process of manufacturing 152
Leather splitter 281
Leag, artificial 186, 231, 282, 288
Leg, artificial, supporter for 25
Lever, differential 302
Lightning rod 25, 361
Lime, superphosphate of, apparatus for manufacturing 329
Linchpin 331
Linnment 186, 330, 409
Linnseed, apparatus for filtering 187
Liquids, concentrating 290
Liquids, inflammable, mode of preparing 232
Liquids, inflammable, mode of preparing 232
Liquids, inflammable, mode of preparing 233
Lock, for 16, 201
Lock, vagon 409
Lock, wagon 409
Lock, wagon 409
Lock, window 314
Locomotive head tight 137
Loowing 2lass, process for making 104
Loom, 28, 223, 3, 4
Loom, circular, for weaving covering of cords 25
Loom for weaving pile fabrics 133
Loom, hand 201

Loom, circuity, for weaving covering or cords 25
Loom for weaving pile fabrics 133
Loom, hand 201
Loom, heddle frame for 393
Looms, friction mechanism for warp beam of 153
Looms, hair cloth, weft-feeding device for 152
Looms, picker motion for 313
Looms, shuttle for 27, 99, 409
Lubricator 4, 107, 120, 283, 314
Lumber, machine for tallying 393
Lumber measure 41

Machine for elipping hair, etc., from ani-mals 55, 129 s 408
or counting 9
or counting objects with straight
and somi-circular easts 11
or cutting shear bands 232
for gathering and loading
hay, etc. 408
loading throssing 409
or banding hay 50
planing 409
for pointing paper hangings 409
for pointing paper hangings 409
for pointing paper hangings 409

device for spreading 41 method of treating 329 machine for polishing 138 meess for treating 577 riction 361 older 394 olints, machine for making 8 manufacture of 281 (29) spring 163 Metals, motion, casting 74
Metals, precious, mode of amalgamating
315
Meter, water 232, 261, 362
Milk, can for transporting 184
Milk and uncrystallized sugar, condensed
9
Milk one 184
Mill, bonie 184
Mill, tanning 90, 122, 265, 313, 361
Mill, ranning 90, 122, 265, 313, 361
Mill, soine 184
Mill, stanger cane 187
Mill, singer cane 187
Milling machine 138, 154
Minning, ventilation of 293
Minning, placor 233
Minning machine 259
Minning, placor 233
Mode of compensation for loss of motion
122
Mines, mode of ventilating 73
Molasses, mode of improving 133
Mold, brick 124
Mold, butter 135
Molding core 317
Molds for casting 169
Mop 135, 216, 346
Mop holder 122
Mortars, hand, mounting 104
Motter power 346

Nails for horse shoes, machine for making 234
Nails, machine for cutting 315
Neck-tie 218
Neck-tie holders 104
Neck-tie supporter 128
Neckles supporter 128
Neckles, kutting, machine 299, 361
Newspaper file 104
Night burner 9
Nozzlos, variable exhaust 152
Nut, self-locking 138
Nuts, machine for making 136

Offal, apparatus for treating 233
Offal, method of treating 138
Offi-boring apparatus 329
Offi-boring 329
Offi

er 24
hine for crushing 281
hine for crushing 281
hine, 184, 187
aratus for calcining 122
aratus for grinding and amalting 360
aratus for treating 362
nicrous, process for treating 290
per, smelting 297
ulphurizing 249
talile, method of desulphurizto, 42 etc., 42 occess for amalgamating 10, 89 occess for desulphurizing 184 th asting and desulphurizing 232 ver, process of working 231 ating 232 substances, process of

Organic substances, process of preserving 41
Ornamenting, mode of 137
Oven, detachable 409
Ovens for converting from into steel 57
Oxides, metallic, process for purifying
217
Oxyoke, bow pin for 250

Machine, pianing 409
Machine for pointing paper hangings 400
Machine for pulverring the soil 30
Machine, scroll sawing 408
Machine, scroll sawing 408
Machine, or aurine status 101
Machine, to allying, for measured grain 56
Machine, wood bending 408
Machine, to allying, for measured grain 56
Machine, to allying, for measured grain 56
Machine, scroll sawing 408
Machine, scroll sawing 50
Paner, scholar 500
Paner, tobacco 130
Paper, machine for making 108
Paper, machine for drying 50
Paper, pulp 229

Paper pulp, machine for grinding 297
Paper pulp, manufacture of, from
wood 9
Paper pulp, process of preparing sawdust for 9 Paper stock, manufacture of 42
Paper stuff, apparatus for washing 217
Paste blueing 106
Pasteboard for boxes, machine for cutting 14
Paper washer for paper stock 90
Pasteboard, machine for cutting 152,
170

Peat, apparatus for preparing, for fuel 14
drying and charring 250
, machine for tempering 282
holder 58
rack, etc., combined 41
il and craser 297
il:point protector and mark eraser
37

eum, apparatus for distilling 217,

Seum, apparatus for distilling 217, 50 seum, apparatus for generating gas foun 330 leum, barrels for 137 beum, device for heating, etc. 345 beum, device for heating, etc. 345 beum, distilling 134, 249 bleum, process of preparing, for paint 248 oleum, retort for distilling 104 (3) bleum, retort for 222 bographic cameras, achromatic obect gas for 222 bleum, apparatus to exhibit 256 tographs, machine for cutting 104 (2) bleum 104 bleum, apparatus to exhibit 256 bleum, appar

Piles, wooden, mode of protecting surlaces of 90
Pilms, dentists', machine for heading 201
Pipe, gas and water 9
Pipe, not blast 169, 186
Pipes, Joints for 201
Pipes, Joints for 201
Pipe, sewer 10
Pipe, swoking 73, 121, 170, 216, 346
Pipe stem, tobacco 164
Pipe 186, 217, 265, 377
Pipe, water, tapping 88
Pipes, casting 362
Pipes, casting 362
Pipes, casting 362
Pipes, casting 362
Pipes, water, tapping 88
Pipes, casting 362
Pipes, water, tapping 88
Pipes, water, and process for manufacturing 105
Pipes, water and other, tapping branch
for 121
Piston packing 187 (2)
Piston packing 187 (2)
Piston pump 249
Piston rods, guide for 181
Pistons, manufacture of packing for 249
Piane, bench 170
Piane, edge 26, 377
Piane stocks, machine for mortising 138 (2)
Piane stocks, machine for dressing throats of 137
Pianter, corn 40, 88, 128, 184 (2), 187, 298, 313, 329 (3), 346, 378 (2), 394, 409
Planter, corn combined roller and 104
Planter, corn combined roller and 104 wooden, mode of protecting sur-

si3, 322 (5), 346, 378 (2), 334, 409

Planter, corn combined roller and 104

Planter, cotton-seed 103

Planter, and cultivator, combined 233

Planter, hand corn 217, 409

Planter, seed 170 313, 330 334

Planter, seed and potato 88

Plaster and seed sower 40

Plates, screw 185

Plattorm for steamboats 220

Plow 83 137, 138, 152, 187, 200, 217, 231, 259

Plow corn 187

Plow, corn 187

Plow, cultivator 313

Plow, ducking and mode 41

Plow, ducking and mode 41

Plow, ducking 318, 377, 333, 337, 333

r gaing 58, 89, 105, 106, 137, 216, 33 , shovel 26, 313 , side hill 58, 74, 186 , snow 136 , su ky gaing 218 , wheel 9, 133 , rotary, traction wheels for : 32 , loom for weaving 187 at book 56 ling machine 393 sole, sibmarine 9 108 cheer, submarine 393 r stoves 253 a or sod a, process of liberating 218 sa, preparation of nursies of 314 digger and separator 376 seedlings, instruments for cutting 18

embossing and seal 361 hay 377 475 cane 201 5 10; 23, 234, 405 this forms for 187 no, photographic 254 chine, washing bland

ie 183
ies, rifled, practice for 74
ies, rifled, practice for 74
or 40
or, canal 330
ors, manufacture of 250
or, marine 237
or, sorew 89, 361
o blue, manufacture of 67
obsek 235, 314
teasion 382
window cord 250

omp S, 10, 26, 40, 42, 104, 137, 184, 186, 214, 223, 283, 243, 243, 242, 228, 213, 330, 346 243, 415 and 140 a

Q

R

R

c, coat and hat 154, 187

c, feed 298
c, hay 90, 296
c, sheep 300, 394
ator, heat, for stoves 217
road 183
und signal 303
und switch 136, 248
of railroad, straights uning 263
railroad, fastening 302
ay, marme 216
ays, construction of 10
ays, atreet, rail for 10
horse 9 Gb, 25 Cb, 41, 73, 74, 89 Cb, 2, 180, 201, 280, 313, 330, 346, 361, 362, 5, 344
horse hay 314, 345
revolving hay 182
cooking 233
heating and cooking 345
et and pawl, automatic 301
ng machine 106, 184
ng and mowing machine 42
expansible, for weaving, etc. 137
errator 40, 121, 249, 329
err, passenger 185
et and sommer piece 40
itor, gas 265
et and sommer piece 40
itor, gas 265
otder 304
ring apparatus 201
s, gas and other 73
nachine for hulling, etc, 186
bit 105
122, 154

but 105 122, 154 craper 3/5 blasting 376 r machine for spinning 305 r pin 378

de of applying covering to 393 lock 105 er articles 298 er, hard, manufacture of 170 er, etc., implement for cutting 297 er 701s 153 er 74, 106, 187, 201 , parallel 137 , gear cutting 298

S S
ccharine liquids, apparatus for evap
orating 104
diron 394
ddie, harness 265, 280
adie, riding 347
ddie-trees, harness 58, 163, 330
fe 10, 25, 184
fe, fire-proof 120
fe, match 10
fe, money 201
fety-valve rubber 381
il clutch 394
il clutch 394
ind, machine for pulverizing 186
nd-naper holder 186
nd-naper holder 186
nd-lee 232
p spile 29
sh, clock dial 9
sh fastening 377
sh supporter 345
shes, window, raising and lowering 11
usage diller 41
w 282, 266
w-filing machine 331
w ferring wood 39 aw 122, 296 saw-filing machine 331 aw frame, wood 89 aw-grinding machine 202 aw-mill 9, 40 aw-mill head blocks for 56 aw, scroll 88

Saw, scroil 85
Saw-set 255
Saw-setting machine 360
Sawing machine 24, 25, 42, 57, 88, 90, 104, 122, 139 (2), 153, 202, 218, 281, 297, 378
Sawing and boring machine 105
Sawing machine, shingle 298
Saws, circular, hanging 315
Saws, circular, mode of adjusting on their arbors 27, 135
Saws, cross-cut, method of attaching handles to 88
Saws, machine far sharpening 217
Scale, parfing 121
Scale, platform 220
Scraper, canal 105
Scraper, canal 105
Scraper, grading 313
Scraper 10e 408
Screen, coal 90, 233
Screen, grain 44
Screen-catting machine 202

ng machine 74 Screw threads, die for cutting 314
Screws, brass-brazing to iron pipes 138
Screws, machinery for making 314 (2)
Screws, machiner for pressing and shaping 266
Screws, wood, machine for nicking and shaving 361
Scroll sawing machine 105, 347
Scythes, blank for 315
Seed sower 73
Seeder and cultivator 153
Seeding machine 10, 40, 56, 121, 137 (2), 166, 184, 216, 232, 313, 361, 393
Seeding machines, broadcast 42
Seeding machine, roller and drag, combined 56
Separator, gold 514, 409

bined 66
Separator, gold 314, 409
Separator, gold 314, 409
Separator, grain 9, 26, 41, 89, 90, 283, 297, 377, 409
Separator, grain hopper for 216
Separator, ore 41
Sewing machine 10, 331, 363, 378, 409
Sewing machine, basting gage for 9
Sewing machine, binding attachment to 187

Sewing-machine bobbins, machine for winding 217 sewing machine, braiding guide for 250 iswing machine for making band ruf-fling 138

376
machine feed, wheel for 499
machine, glass presser feet of 378
machines, means for operating
tile of 331
machines, tuck creasing device

ade-holder for Jamps 154
aft coupling 9
afting 364
afting, universal 106
ink laster 383
inking machine 201
ars 266, 361
ars for cutting metals 120
ars for marking cattle 360
ir, hand 26, 217
ir, lamp trimmer 24
p label 363
ir, metal, machine for cutting 56, 377
i, explosive 29, 339, 314, 378
explosive, percussion fuse for 360
i, submarino explosive 347
er, corn 73, 106, 120, 168, 378
er, corn, feeding corn to 57
s, explosive, tuse hood for 266
s, fuse for 59
s, explosive, time fuse for 218
s, explosive, time fuse for 218
s, explosive, time fuse for 218
s, explosive, timeing by clock work

315
Shield for breast straps 299
Shingle machine 24, 103, 331
Shingles, machine 70 measuring and counting 245
chirt bosom 13, 34
Shirt bosom, paper 169
harts 106
hose 127 is 106
172
lacing 343
lasts 106
soles, voltaic 120
string 138
string cutter 282
, turned 347
s, unachine sewed 394
case 9
, manufacture of 26
and shell, casting 379
lifer supporter 361
el and ash sifter 217
el handles, machine for making 10
ter bolt 40
r, ash 329, 409
r, coal 347
r, coal and ash 122, 216
r, flour 233, 346, 129, 405, 400
illuminated 331
transparent, for street lamps 216
d frames 266
d frames 265
and saccharine solutions, process
r treating 237
26, 183, 202, 232, 265, 280, 331
feet 169
sharpener 233

aharpener 233 g pond, arrincial 297 hoop 10, 346 ladies' feited 24 skeleton 250 frame for gathering 217 t, 408

or carriages 315
bell attachments 392
bells, attaching, to straps 184
bread 346
bread and meat 106, 129, 137
bread and vegetable 41
vegetable 294
shoulder strap 377
house 282
sook 40, 377, 394
92

a water cooler 169
a 89
a bed and crib 216
ar camera 261
c, channeled 409
des, rotary 232
des, rotary 232
ke machine, die for 376
kes, tool for drawing 106
adie bearing, self-lubricating, for spinning 281
aning frames, bolster for spindle of
265
mains frames, self-lubricating, spindle

ming frames, self-lubricating, spindle bolster for 250 ming frames, self-oiler spindle bolster for 41

pinning frames, self-oiler spindle bolster for 41 siming jack 10 siming jack 10 siming machine 133 siming machine, hand 281 siming machine, thread guide for 40 siming machines, thread guide for 40 siming machines, hand, mode of adjusting bands on 331 siming machines, hand, mode of adjusting bands on 331 sirits of turp entine, obtaining 104 sirits of turp entine, obtaining 104 sirits of other distillates, upparatus for measuring 91 sittoon and foot warmer 281 sools, mode of fastening heads to 330 soon 216 soon, sheet metal 403

on 216 m, sheet metal 408 ng 331 ng boit catch 346 ng, bumper 73 ug, car 40, 56, 283, 393 ng catch 186 ing catch 156
ing, gum elastic couplings 251
ing horse 154
ing, window 216
ings, elliptic, machine for straightening 138

inery for coiling 362 e 185 molders' 49
Brier, boot-drawer, etc. 42
, chaff and straw 217
for buildings 255
older for railroad cars 58
canceler 49
band 58
hand, for printing 104
, machine for attaching 298
lower 231
boxecorables cames 40

r 331
graphic camera 4g9
slo 229
slo 229
for barrels 10
g machine 379
sor 104, 469
slone for cutting 105
rator 377
slors, water gage for 57
slors, water gage for 154
slog apparatus, coals for 154
slog and fre-estinguishing ap-

Trunks, roller cleat for 249
Trunks, roller for 409
Trunks, 25, 25, 329
Trunkses, railroad car, mode of constructing 56
Tub for wasning and other purposes 104

Reissues.
Amalgamator 234
Artesian wells, apparatus for boring 11
Barrel machinery 315 (2)
Barrels, coating 107

for propeller shafts 8

g machine 2 er 85, 314 ne for dressing 362 otating 314 85, 187, 386, 281, 208, 391, 392 ht coal 331, 405 nrning 216, 219, 302 3, 394, 335

11 105, 394, 395 1 oil 74, 105 king 25, 314, 361, 362 king 3, 314, 361, 362 king and beating 345 ciliter 10 114, 469

Stove, twin wood 187
Stoves, radiator for 203
Stoves, radiator for 203
Stoves, radiator for 203
Stoves, reap-stone, joining and fitting corners of 89
Straw, treating, for paper pulp 266
Street lamp-posts 152
Street steam railway car 378
Street-sweeping machine 10, 104, 298
Street-sweeping machine 10, 104, 298
Street-sweeping machine 10, 104, 298
Street-washer 169
Stud and button 331
Studs, plastic, for doors 89
Submarine mouth-piece 216
Sugar, apparatus for dividing 250
Sugar boiling 138
Sugar cane, machine for crushing 202
Sugar, for table use, machine for motd ing 24
Sugar pans, apparatus for shifting 315
Sugar, removing foreign substances from 297
Surveying instrument 363
Suspenders, chest-expanding 106
Switches, mode of operating 58
Syringe 266

Washboard 265
Washboard, attachment for 157
Washboard, 250, 277, 233, 250, 297, 298, 330, 331, 260, 376, 377, 593
Washstand, burean, desk and wardrobe 9
Watch keys, manufacturing 700
Watches, tool for closing or contracting harris of 9
Watches, winding and setting 283 (2), 297
Water cooler 169
Water pipes—apparatus to prevent bursting 200
Water-proof fabrics, manufacture of 578
Weigher, automatic grain 266
Weights, holsting and lowering 377
Weight lifting apparatus 333
Weight-pulling apparatus 333
Weight-pulling apparatus 333
Weight-pulling apparatus 333
Weight-pulling apparatus 138, 102 (2)
Well-boring device 266, 297
Wells, artesian, bore for 25
Wells, artesian, boring machine for 378 Table, bookbinder's cloth-cutting 25
Table and desk 296
Table, extension 120
Table, extension, slide for 296
Table, for hospitals 361
Table, molder's 28
Table, molder's 28
Table, molder's 28
Table, and rocking, for amalgamating gold 296
Tables, morable joints for 346
Tables, morable joints for 346
Tables the driver 377
Tackle blocks, casting 330
Tackle, safety 379
Tags, apparatus for making 168
Tailing, pulverizing, from gold washers
360
Tanning 152

Talling, pulverizing, from gold washers 300
Tanning 152
Tanning, process for 361
Tea and coffee pots, handle for 393
Tea leaves, machine for rolling 265
Teeth, artificial 137 (2)
Teeth, plugging instrument for 170
Telegraph cable, 170
Telegraph wires, composition for insulating 187
Telegraphic posts 363
Thill attachment 58
Thill holder, meta lic, 347
Thill tag 363
Thills, coupling, to carriages 56
Thills, mode of attaching to axies 24
Thrashing machine 27, 105, 153, 282, 346, 383, 394
Thrashing gear, swinging gear for 56

thing gear, swinging gear for 56 id, apparatus for winding from the rein 74

4, machine for dressing and finish (122)
ing machines, band cutter for 216 nolder 154
holder, railroad 153, identifying 360 r, made of splicing 297
letectef, Watchman's 393
seeper 378
blece escapement for 169
blece, globe 315
reporter 280
plece, universal, 153, 234
rinking machine 105
ipsetting 394, 408
device for shrinking 57
co, chewing, preparing 202
co, the cut, preparation of 9
co, machine for cutting 202, 216, 4, 346
companies for drains 122

sacco, machine for cutting 202, 216, 249, 346
sacco, machine for drying 122
sacco, mode of curing 128
sacco smoke purifier 232
sacco stopper 120
mato soup 314
sg. pipe 9, 378
nlc bitters 265
ol. combrehensive 379
of for boring holes 9
of holder, adjustable 152
ols, boring, coupling shafts of 329
rpedoes, apparatus for operating 202(3)
y 314

Toy 314
Toy block, mosaic 154
Toy, daucing 232
Toy, mode of constructing 121 Toy, mode of constructing 121
Trace connection 283
Track layer, automatic 233
Train-way for ferry-boats 299
Trap, animal 25, 137, 169, 187, 314
Trap, animal, self-setting 137
Trap, gly 56
Trap, steam 138, 202, 265, 281
Treadle for operating machinery 56
Treadle motion 281
Tree protector 122, 194
Trees, remedy for disease in 149
Trimmings apparatus for fluting 106
Trip hammer 120, 121
Trough for raising dough 186
Truck, car 24, 25, 361, 362
Truck for transporting casks 26
Truck for transporting casks 26
Truck railroad cars, mode of regulating
122
Truck day 240

Tube for oil wells 202
Tubes, forming, of sheet metal 362
Tubing, flexible 169
Tubing, flexible 169
Tubing for illuminating gas 154
of Tunnel 10
Tunnel 10
Tunnel and faucet 186
Turning machines 25
Tuyer 154
Twine cutting ring 24
Twine, paper, mode of manufacturing 138
Twine, process of manufacturing from paper 120
Type, flexible 267

U

Under garments for ladies 169 Uterine supporter 9

Under garments for 18des
Uterine supporter 9

Valise, saddle 233
Values, saddle 233
Value and seat, combined 1907
Valve, automatic, for steam radiator
266
Valve cocks 10de 186
Valve cock, for canal gate 339
Valve, lock, for canal gate 339
Valve, safety, device for operating 120
Valve, safety, device for operating 120
Valve, steam, regulator 468
Valve, steam, regulator 468
Valve, steam, regulator 468
Valve, steam, regulator 50
Vapors, apparatus for whaling 297
Vapors, noxious, process for disinfect;
ing 136
Varnish, composition for 90
Varnishing machine 26
Vehicle 298
Vehicles, attaching and letaching tops
of 377
Velociped 266
Velociped 26

Vessels, sunken, mode of raising 25, 136, 354
Vegetables, apparatus for obtaining extracts from 257
Vegetables, composition for preventing disease in 217
Vinegar, manufacture of 217
Vise 40 272

Wells, artesian, exploding torpedoes in 298
Wells, artesian, boring machine for 378
Wells, artesian, boring tools for 360
Wells, artesian, boring tools for 360
Wells, grapnel for 577
Wells, machine for boring 266
Wells, oil, drill for boring 378
Wells, oil, drill for boring 378
Wells, oil, mode of treating to remove paraffine 297
Wells, oil and other, drill for 379
Wheelbarrow 23, 394
Wheel, car 106
Wheel, carriage 154, 409
Wheel, feed 249
Wheel, friction, and oil chamber 216
Wheel, railroad car, manufacture of 347
Wheel, wind 40, 253
Wheels, water 41, 57, 137, 139
Wheels, water 41, 57, 137, 139
Wheels, mode for making 409
Wheels, mode for making 408
Whithelead, manufacture of 469
Whithelead, mode of making 170
Wick, mode of rendering incombustible 249
Wick scraper 266

249
Wick scraper 256
Wick scraper 257
Windlass 105, 137, 201, 250
Windlass and canstan screw 249
Window bilind 394
Window bilind 38, locking and stopping 378
Window double 361
Window shade 346
Window shade adjusted 90
Window sash, metallic 122
Window sash, retailer for 154
Window sash, suspender 42
Window sash suspender 42
Wire, beaded, machine for making 218
Wire-cutting machine 377

Wood-splitting machine 232
Wood, apparatus for oiling 377
Wood in carding machines, machinery for oiling 105, 347
Wood, latricants for 169
Wood, machine for oiling 297
Wood, machine for washing 122
Wood, method of oiling 29, 107 (2)
Wrench 74, 234
Wringers, rollers for, devise for covering 261

Wringing machine 90

Bott 234
Bott, carriage, die for 234
Bott, carriage, die for 234
Bott, carriage, die for 234
Stake, railroad car 107
teeving 218
ridge, truss 170
an, trait 234
unton, wrought, manufacture of 170
ur, railroad 218
reingmachine 123
reingge box 123
rininge cases, machine for making
231 (2) Cartridge cases, machine for making 331 (2)
Cartridge cases, metallic, machine for loading 107
Cement type, machine for making 331
Chair seat 139
Thair spring back 395
Tover, machine for hulling 139
out and hat hook 410
ook 395 ek 395
lar and coffs 395 (4)
lar, paper 123
ar, shirt 239 (2)
are, apparatus for forming 11 (2)
position of matter 170 (3)
lenser 155
vator 416
v comb. at Cultivator 440
Curry comb 91
Cutter, straw 170, 188, 218, 234, 379
Distilling hydro carbon oils 440
Eye colors, manufacture of 34;
Eievator, hay 139 22
Engine, hot air 299
Ingine, steam 135
Engines, steam, means for operating the valves of 347
Files, machine for cutting 155
Fire-arm, breech-loading 331
Fire-arm, breech-loading 331
Fire-arm, magazine 315, 363
Fire-arm, revolving 11, 251, 253 (3)
Food, concentrated, mode of preparing 315
Fook, lay-clavating 233.

Frame, roving 331
Frame, roving 331
Frame, roving 337
Frumace for treating ores 395
Furnaces, cupola 27
Gas cock 267

63
for smoking irons 107
a and skins, tanning 58, 331
ing and scouring machine 234
rant 395
rument of music, keyed 123
iorn 58
iorn 58
iorn 59
iorn 59 the, turning 410 ther splitting machine, 331 ther, treating 42 , artificial 218 (2) ht, rendering artificial, the same as light 234

3,
, holsting 410
for peeling willows 410
ture of dextrine, sugar, etc. 410
niny 234
for looking glasses, method of
ing 170
fastening india-rubber rolls to
illie sharts 410
g machine 74
gases, condensing and separa203
dd paper boards, machine for

ting 203
Paper and paper boards, machine for making 188
Pipe, drain, machine for making 171
Pipe, tobacco 27, 251
Planter, corn 283
Press, hay and cotton, 331
Pump 107

ties, wood, method of preserv

Sheet metal ware, casting bottoms on 171
Ship knee 363
Skirt, hoop 139
Skirt, hoop 139
Store, base-burning 170, 379
Store, base-burning 170, 379
Stores, improvement in 205
Street-washer 395
Syringe, enema 299
Tackle block 267
Tackle block 267
Tackle block 267
Tackle block 367
T

Extensions.

Carpet, two and three ply 58 Cars, railroad, mode or preventing en-trance of dust into 363 Coffin 363 Desk, school 363 Door, compound, metallic, for vaults, Sc. 363

ke. 363

Fixe-arm, trigger-operating revolving 85, 107

Fixtures, window curtain 263

Frame, revolving, for drying fruit 364
Governor, steam-engine 218, 263

India rubber, manufacture of 363 (2)

Limekiln 363

Machine for turning irregula forms 171

Fump, rotary 171

Screw blanks, machine for arranging and feeding 218, 363

Sewing machine 171

Scinning machine 171

Designs.

Designs.

Badge or breast pln 123
Belt-hook, military 123
Belte-hook, military 123
Belter hit 379
Burial case 139
Burial case 139
Burial case 139
Burial case 139
Carpet patterns 74, 91, 207 (0) 379
Clock case 331
Clock front 267 (2) 331
Clock front 267 (2) 331
Codin 347 (3)
Codin handle 331, 347, 335
Composition in alto relievo 207
Furnace, agricultural 155
Group of figures 331
Lemon press 379
Lock, door 201
Match box 11
Oil-cloth, floor 331
Piano-stool 331